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This paper presents a recent advancement that transforms the problem of decaying turbulence in the Navier-
Stokes equations in 3 + 1 dimensions into a Number Theory challenge: finding the statistical limit of the
Euler ensemble. We redefine this ensemble as a Markov chain, establishing its equivalence to the quantum
statistical theory of N Fermions on a ring, interacting with an external field associated with random fractions
of π. Analyzing this theory in the turbulent limit, where N → ∞ and ν → 0, we discover the solution as
a complex trajectory (instanton) that acts as a saddle point in the path integral over the density of these
Fermions.

By computing the contribution of this instanton to the vorticity correlation function, we obtain an analytic
formula for the observable energy spectrum—a complete solution of decaying turbulence derived entirely from
first principles without the need for approximations or fitted dimensionless parameters. Our analysis reveals
the full spectrum of critical indices in the velocity correlation function in coordinate space, determined by
the poles of the Mellin transform, which we prove to be a meromorphic function. Real and complex poles
are identified, with the complex poles reflecting dissipation and uniquely determined by the famous complex
zeros of the Riemann zeta function.

Universal functions of the scaling variables supersede the traditional turbulent scaling laws (K41, Heisen-
berg, and multifractal). These functions for the energy spectrum, energy decay rate, and velocity correlation
significantly deviate from power laws but closely match the results from grid turbulence experiments9,10 and
recent DNS data49 within experimental error margins.
Keywords: Turbulence, Fractal, Fixed Point, Velocity Circulation, Loop Equations, Euler Phi, Prime Num-
bers, Path Integral, Instanton, Markov Chain, Energy decay

I. PROLOGUE

Turbulence appears as an overwhelmingly complex
phenomenon. As depicted in Fig.1 from a recent
simulation51, vortex lines of various shapes and sizes are
entangled much like spaghetti. This visual complexity
raises the question: How can such complexity be de-
scribed analytically? Yet, it also sparks hope for a sim-
plified statistical description.

With its myriad interacting particles, molecular dy-
namics similarly presents an intricate challenge. How-
ever, despite its complexity, a straightforward statisti-
cal description emerges that grows increasingly precise
with the escalating complexity of the dynamical system.
Maxwell, Boltzmann, and Gibbs demonstrated that New-
ton’s mechanics uniformly cover the energy surface over
time, laying the groundwork for statistical mechanics—a
robust theory, albeit sometimes computationally chal-
lenging, as in critical phenomena.

Why, then, should Navier-Stokes turbulence be any
different?

Regrettably, to date, no known analog of the Gibbs
distribution exists for turbulent flows. Therefore, a foun-

a)Also at IAS, Princeton, NJ starting September 2024.

dational element of turbulence theory must be to devise
a substitute for the Gibbs distribution.

Hopf initiated this exploration in 1952 (see the re-
cent review in48), formulating a functional equation that
the probability distribution of the turbulent velocity field
must satisfy. Through iterative application of this equa-
tion to the nonlinear term in the Navier-Stokes equation,
one can generate an expansion in inverse powers of vis-
cosity. The core challenge of turbulence theory is solving
the Hopf equation in the opposite limit of low viscosity.

This beautiful equation is mathematically as intricate
as the vortex spaghetti depicted earlier. Such complex-
ity places turbulence high within the hierarchy of physics
theories, nestled between critical phenomena and the
quark confinement problem.

Our theory, initiated in 1993 (see Fig.2 for the his-
torical outline), proposes a simpler variant of the Hopf
equation—the loop equation—which suffices to define the
statistics.

The loop equation corresponds to the Schrödinger
equation in loop space. This profound analogy is not a
poetic metaphor but a precise mathematical equivalence
with significant implications, such as quantum interfer-
ence effects affecting the scaling laws of classical turbu-
lence.

Using the loop equation, we have identified a new in-
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Figure 1. The three-dimensional vortices in quantum turbu-
lent flow from ”Polanco, J.I., Müller, N.P. & Krstulovic, G.
Vortex clustering, polarisation and circulation intermittency
in classical and quantum turbulence”. Nat Commun 12, 7090
(2021). Licensed under a Creative Commons Attribution (CC
BY) license.

Figure 2. The path to the microscopic theory.

stance of duality between the strong coupling phase of
one theory (a fluctuating velocity field in three dimen-
sions) and the weak coupling phase of another (a one-
dimensional quantum ring of Fermi particles).

This weak coupling limit can be analytically solved,
providing explicit formulas for observables in decaying
turbulence, such as the energy dissipation decay index
n(t) = t E(t)

E(t) .
Experimental data from decaying grid turbulence (see

Fig. 3) corroborate our prediction (Fig.4 ) that n(∞) =
5
4 , within a 2% experimental error margin. We anticipate
that more precise future measurements will validate this
prediction more accurately.

Recent DNS and experiments25,49 compute the energy
spectrum and the velocity correlation function, match-
ing our theory and challenging the Kolmogorov scaling.

The accuracy is lower here due to large experimental er-
rors. We found the way to reduce experimental errors by
computing effective index for the second moment of ve-
locity difference using numerical Fourier transform. This
method dramatically improved the quality of the fit for
the effective index in our theory, compared to traditional
numerical differentiation of the energy spectrum.

New large-scale experiments (both real and numerical)
are welcome to verify our theory. Indeed, new experimen-
tal data was published recently for decaying turbulence15.
Their measurements of time decay of the turbulent ki-
netic energy obey our asymptotic law t−5/4, as shown in
Fig 4 of their paper. The large tank data relevant to our
isotropic homogeneous turbulence are shown on the inlet.
The authors of this paper are trying to explain their small
tank data in terms of the Saffman-Kolmogorov model,
dismissing the large tank asymptotic decay as ”viscous ef-
fects.” We disagree with such dismissal, as our turbulence
theory explains this data. The only problem with this
data is that the Reynolds numbers are relatively small.
We need confirmation with higher Reynolds numbers.

II. DEFINITIONS AND NOTATIONS

DNS = Direct Numerical Simulation; OPE = Opera-
tor Product Expansion; Wilson loop = Loop average =
average of phase factor of circulation as a functional of
the shape of the loop. ν is viscosity, r⃗ is coordinate, k⃗ is
momentum (or wavevector)., ξ, η, ρ are dimensionless in-
tegration variables, α, β, γ and other Greek indices used
for vector components with implied summation implied
for repeated Greek indexes. We use the units where the
constant fluid density ρ = 1. The 3D vectors and the
dot products are denoted like this: v⃗(r⃗, t), k⃗ · r⃗. We also
use the Einstein tensor notation with summation over re-
peated Greek indexes vα, rβ , ωαβ = eαβγ∂βvγ , and so on.
In these cases, these indexes run from 1 to d, where d is
the dimension of space. In the remaining cases, we work
only in 3D space. We always consider the Euclidean met-
ric and Cartesian coordinates, so we make no distinction
between upper and lower tensor and vector indexes. The
parameterization of the loops is chosen to run from 0 to 1
with periodicity implied beyond these limits. The space
loops C⃗(ξ) are assumed to be continuous and periodic but
not differentiable. In addition, the loop can have some
extra periods, in which case this loop represents several
separate loops. In particular, the same geometric loop
C⃗ can be covered several times with C⃗n(ξ) = C(nξ).
The momentum loops P⃗ (ξ, t) depend on time, whereas
the spacial loops are static. The momentum loops can
have discontinuities ∆P⃗ (θ, t) = P⃗ (θ + 0, t) − P⃗ (θ − 0, t).
The momentum loops are independent of the space loops,
being the vector functions of ξ, t. The circulation Γ =∮

C
dr⃗ · v⃗(r⃗, t) =

∫ 1
0 dξC⃗ ′(ξ) · v⃗(C⃗(ξ), t). The whole the-

ory, starting with circulation, is parametric invariant
ξ ⇒ f(ξ), f ′(ξ) > 0. The operators are denoted like
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â, â†, X̂. We use three types of symbols for differentials.
d is an ordinary differential of variable like dξ or vector
variable like dC⃗(θ) = dθC⃗ ′(θ). D symbolizes a measure
for a path integral Dα; it can be strictly defined by the
limit of the multidimensional integral over the discrete
values or as a limit of a multidimensional integral over
all Fourier harmonics (this is cleaner). We do not need
to specify the Gaussian measure, as it is well-known in
physics and math. Finally, δ is a functional variation, and
δ
δ is a functional derivative like in δ

δϕ(ξ) ΛN [ϕ] = δΛN [ϕ]
δϕ(ξ)

with the L2 norm in functional space. We also use nota-
tions ∂t = ∂

∂t , ∂β = ∂
∂rβ

for the time derivative and for
components of the spatial derivatives.

III. SUMMARY

Here are the main results reported in this paper.

• We review the theory of Navier-Stokes loop equa-
tion, its relation to the Hopf functional equation,
and the representation of the loop functional in
terms of momentum loop.

• We present the solution of the loop equation in
the inviscid limit of the three-dimensional Navier-
Stokes theory in terms of the Euler ensemble. This
ensemble consists of a one-dimensional ring of Ising
spins in an external field related to random frac-
tions of π.

• The continuum limit of this solution, N → ∞, cor-
responds to the inviscid limit of the decaying tur-
bulence in the Navier-Stokes equation. Effective
turbulent viscosity is ν̃ = νN2 → const .

• We derived an analytic formula for energy spectrum
and dissipation in finite system (58a), (58c), (J9)
and investigated it in Appendix K.

• The energy spectrum decays asymptotically as
(ν̃)3/2t−1/2κ−7/2 where κ = k

√
ν̃t.

• The turbulent kinetic energy decays as E(t) ∝ t−5/4

• Both effective indexes n(t) = − d log E
d log t , µ(κ) =

∂ log E(k,t)
∂ log k are nontrivial functions of the logarithm

of scale and time, approaching n(∞) = 5/4, µ(∞) =
−7/2, (see Fig.9, Fig.7).

• The 1966 experimental values9,10, Fig.3 of n(∞) ≈
1.25 ± 0.02 agree with our prediction.

• The results of DNS for the energy spectrum in de-
caying turbulence (Fig. 5 of the review paper49)
shows the energy spectrum decaying faster than
k−5/3. The shape of a log-parabolic curve in DNS
matches our prediction Fig.6.

Figure 3. The experimental data9,10 for decaying turbulence
behind the oscillating grid. Reproduced with permission from
”Comte-Bellot G, Corrsin S. The use of a contraction to im-
prove the isotropy of grid-generated turbulence”. Journal of
Fluid Mechanics. 1966; 25(4):657-682, © 1966 Cambridge
University Press. The two lines correspond to log-log plots of
1/v2

⊥, 1/v2
∥ for the flow behind the grid. The total inverse ki-

netic energy iK = 2/(v2
⊥ +v2

∥), would have the the mean slope
(1.24 + 1.27)/2 ≈ 1.255 ± 0.02 in agreement with our predic-
tion n(∞) = 5

4 . This plot was shown by K.R.Sreenivasan at
the ICTS in Dec’23 in Bangalore, India57 as the most reliable
experimental data. Other measurements and simulations, at
different conditions reviewed in49, provide mismatching data
influenced by initial and boundary conditions. The only large-
scale DNS43,49 covering three time decades also matches our
predictions.

• In the section VIII, we verify our prediction for
the second velocity moment

〈
∆v2〉 (r) by numer-

ical Fourier transform of the raw spectrum data
from43,49. The K41 2

3 scaling law is ruled out by
this DNS, but there is a match within the DNS er-
rors of the scale-dependent effective index with our
theory in a wide range of distances ( Fig.15 ).

• We computed the spectrum of singularity indexes
pn in the product v⃗(0, t) · v⃗(r, t) ∼

∑
Cn(t)rpn , sim-

ilar but different from the OPE in CFT. Some of
these singularity indexes come in complex conju-
gate pairs related to the zeros of the Riemann ζ
function (88),(92),(97)).
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Figure 4. Green curve is the inverse energy 1/E(t) as a func-
tion of time. It slowly approaches from above its asymptotic
law 1/E(t) ∝ t

5/4 shown in red.

Figure 5. The log-log plot of deviation from K41 energy spec-
trum in decaying turbulence, taken from43,49, Panickacheril
John John, Donzis Diego A. and Sreenivasan Katepalli R.
2022, Laws of turbulence decay from direct numerical simu-
lationsPhil. Trans. R. Soc. A.38020210089, licensed under
a Creative Commons Attribution (CC BY) license. The ob-
served curve approximately matches our theoretical curve in
Fig.6. The K41 spectrum would correspond to a horizontal
line, a total mismatch.
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Figure 6. Log-log plot of the universal function H(κ)κ5/3.
It starts growing, reaches the maximum, then turns down,
asymptotically decaying as κ−11/6. This qualitatively matches
the DNS plot at Fig.5. A larger DNS data at higher Reynolds
numbers would be required to verify our theory with more
precision.
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Figure 7. The theoretical plot of effective spectral index
µ(T ) = k∂k log E(k, t) as a function of T = k2ν̃t. It starts
at 0 and goes down to the limit −7/2. The DNS plot Fig. 8
starts higher, at µ = 2, then goes down and stops at approxi-
mately −1 for accessible decay time t. The part from −0.5 to
−1 qualitatively matches our curve, but clearly, more data at
higher Reynolds numbers is required to verify this prediction
of our theory.

Figure 8. The DNS plot of spectral index µ(t) =
k∂k log E(k, t) as a function of log t at fixed values of k, taken
from49, Panickacheril John John, Donzis Diego A. and Sreeni-
vasan Katepalli R. 2022, Laws of turbulence decay from direct
numerical simulations. Phil. Trans. R. Soc. A.38020210089,
licensed under a Creative Commons Attribution (CC BY) li-
cense. The curve goes from µ = 2 to µ ≈ −1, which partly
overlaps with our theoretical curve in Fig. 7. Larger dataset
with higher Reynolds numbers is needed for a quantitative
match with our theory.

IV. INTRODUCTION

The original version of this paper was overloaded with
formulas, contradicting the preferred 21st-century style.
Modern researchers prefer to follow the flow of ideas, with
heavy computations hidden under the hood. Eventually,
it will become a job for AI to verify computations using
Mathematica® and digest the results for busy readers.

Considering this, we moved all computations into a
series of appendices, leaving only the general ideas, con-
cepts, and results in the main body of the paper. Further-
more, all the heavy computations, requiring tedious an-
alytical transformations and numerical/analytical inte-
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grations, are performed in Mathematica® notebooks. The
resulting formulas and plots are then quoted in these Ap-
pendix sections. Thus, we have four levels of hierarchy
in this paper:

1. summary

2. sections of the main text

3. appendixes

4. Mathematica®notebooks

This transformation provides distinct pathways for un-
derstanding and applying our study’s results based on the
reader’s background and interests.

We illustrate this hierarchical structure in this on-
line document 38. Browsing this document would give
a reader a big picture with an interactive ability to zoom
into various topics.

Portions of the upcoming discussion are borrowed from
our first paper32 in this series. We included them to clar-
ify the big picture of the theory of turbulence but signif-
icantly modified these sections to reflect our deepened
understanding of this theory.

1. Introduction for Physicists. The physics in-
troduction discusses the potential correspondence
between our theoretical developments and decay-
ing turbulence as observed in real-world or numer-
ical experiments. For physicists, this theory offers
a solution to the Hopf functional equation for the
statistical distribution of the velocity field in the
unforced Navier-Stokes equation. This distribution
represents a much-needed analog of the Gibbs dis-
tribution for decaying turbulence. There are strong
indications that our theory is relevant to one of the
two universality classes observed in these experi-
ments.

2. Introduction for Mathematicians. This sec-
tion summarizes the mathematical framework be-
hind the loop equation30 and its solution32 in terms
of the Euler ensemble. Addressed to mathemati-
cians, this introduction allows those focusing on
rigorous mathematical theory to bypass the more
physically oriented discussions and delve directly
into the Euler ensemble as a novel Number Theory
set with conjectured connections to decaying tur-
bulence. Pure mathematicians may want to prove,
refine, or disprove the open mathematical problems
and unproven conjectures left in this paper.

3. Guidance for Applied Mathematicians and
Engineers. Applied mathematicians and engi-
neers, primarily interested in practical applications
rather than abstract theoretical constructs, are di-
rected to this document’s section VII. Here, they
will find final formulas (58c), (58a), and accom-
panying Mathematica®code34,39 that facilitate the

computation of both the energy spectrum and dis-
sipation rates. These formulas are compared with
real and numerical experiments in section VIII.

4. Notes for the Curious and Skeptical. The
fourth category of readers—those curious yet skep-
tical about applying quantum mechanics to solve
complex problems in classical physics—might still
harbor doubts after reading the main text of this
paper. For them, we have dedicated the last section
X, which addresses some of their lingering questions
and perhaps reassures their skepticism. These read-
ers may want to dive into the Appendixes to learn
the details of our theory after this discussion, hope-
fully eliminating their doubts.

In the following sections, we explore these themes in
depth, aiming to provide clarity and actionable insights
for all readers, regardless of their expertise or interest.

A. Physical Introduction: The Energy Flow and Random
Vorticity Structures

Decaying turbulence is an old topic, traditionally ex-
amined within a weak turbulence framework—utilizing
a truncated perturbative expansion in inverse powers of
viscosity ν in the forced Navier-Stokes equation. Var-
ious phenomenological models have also been aligned
with experimental observations, as discussed in the re-
cent review49.

However, the comprehensive turbulence theory re-
quires solving the Navier-Stokes equations in the strong
coupling limit ν → 0, the direct opposite of weak cou-
pling. The universality of strong turbulence, with or
without random forcing, poses the initial question in con-
structing such a theory.

Direct Numerical Simulation (DNS) data for energy
decay in turbulent flows, detailed in49, suggest a decay
of the dissipation rate E ∼ t−n with n ≈ 1.2 or 1.4 de-
pending on the initial conditions (finite total momentum
or zero total momentum but finite total angular momen-
tum, see49). Thus, two universality classes of decaying
turbulence have been identified.

It remains unclear which, if any, of the data in43,49

reached the homogeneous isotropic turbulence limit cor-
responding to our regime. Moreover, stochastic forces
added to the Navier-Stokes equation in simulations might
contaminate the natural decay of turbulence. These
forces are intended to initiate and enhance the sponta-
neous stochasticity of turbulent flow. However, in our
theory32, this inherent stochasticity is related to a dual
quantum system and is discrete.

The Gaussian forcing can distort these quantum
stochastic phenomena by stirring the flow ubiquitously
and constantly. When the forcing is switched off, allow-
ing the turbulence to decay towards a universal stage, en-
ergy dissipation should occur inside vorticity structures

https://sashamigdal.github.io/QuantumSolution/
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deeply embedded in the flow by the pure turbulent dy-
namics we study.

The forthcoming calculation supports the above rela-
tionship between singular vorticity distribution and en-
ergy flow. In the pure Navier-Stokes scenario, the en-
ergy balance reduces to energy dissipation by enstrophy
within the bulk, counterbalanced by energy input from
boundary forces (e.g., a large sphere encompassing the
flow).

The general identity derived from the Navier-Stokes
equations by multiplying both sides by v⃗ and averaging
over an ensemble of stochastic solutions is:

∂t ⟨E⟩ +
∫

V

d3r
〈
νω⃗2〉 =

−
∫

V

d3r∂β

〈
vβ

(
p + 1/2v2

α

)
+ νvα(∂βvα − ∂αvβ)

〉
(1)

Applying the Stokes theorem, the right side reduces
to the flow through the boundary ∂V of the integration
region V . The left side represents the dissipation within
this volume:

∂t ⟨E⟩ + EV = −
∫

∂V

dσ⃗ ·
〈
v⃗
(
p + 1/2v2

α

)
+ νω⃗ × v⃗

〉
(2)

This identity is valid for any volume, with the left side
indicating viscous dissipation inside V and the right side
representing the energy flow through the boundary ∂V .

Should a finite collection of vortex structures exist
within the bulk, expanding this volume to infinite sphere
results in the ω⃗ × v⃗ term disappearing, as no vorticity
persists at infinity.

Additionally, the velocity dictated by the Biot-Savart
law diminishes as |r⃗|−3 at infinity, so only the v⃗p term
remains significant:

∂t ⟨E⟩ + ⟨EV ⟩ → −
∫

∂V

dσ⃗ · ⟨v⃗p⟩ (3)

This representation of energy flow will remain finite
even as the sphere expands if the pressure scales as p →
−F⃗ · r⃗, where F⃗ is the local force at any given point on
a large sphere:

∂t ⟨E⟩ + ⟨E⟩ = fα lim
R→∞

R3
∫

S2

nαnβ ⟨vβ(Rn⃗)⟩ (4)

What about the Kolmogorov energy flow? It persists
within any finite volume surrounding the set of vortexes:

∂t ⟨E⟩ + ⟨E⟩ = −
∫

V

d3r ⟨vβ∂βp + vαvβ∂βvα⟩ =

−
∫

V

d3r ⟨vαvβ∂βvα⟩ −
∫

∂V

dσ⃗ · ⟨v⃗p⟩ (5)

The triple velocity term in the last equation describes
the Kolmogorov energy flow inside the volume V , and
the second term represents the energy flow through the
boundary.

Without a finite force F⃗ acting on the boundary, such
as with periodic boundary conditions, the boundary inte-
gral would be absent, and the Kolmogorov relation would
be fully applicable:

∂t ⟨E⟩ + ⟨vαvβ∂βvα⟩ = − ⟨E⟩ /V ; (6)

This relation, alongside spatial symmetry properties in
Rd, leads to the Kolmogorov three-point correlation in a
steady state ∂t ⟨E⟩ = 0:

⟨vα(r⃗0)vβ(r⃗0)vγ(r⃗ + r⃗0)⟩ =
E

(d − 1)(d + 2)V

(
δαγrβ + δβγrα − 2

d
δαβrγ

)
; (7)

In the conventional approach to the turbulence prob-
lem, periodic Gaussian random forces F⃗ (r⃗, t) are added
to the Navier-Stokes equations in the conventional ap-
proach, based on time averaging:

⟨EV ⟩ = −
∫

V

d3r ⟨vβ∂βp − vβfβ(r⃗, t) + vαvβ∂βvα⟩ =∫
V

d3r ⟨vβfβ(r⃗, t)⟩ (8)

As the force becomes uniformly distributed across
space, we derive another definition with E = F⃗ · P⃗ , where
P⃗ =

∫
V

d3rv⃗ is the total momentum.
The phenomenon of turbulence we study exhibits a

universal spontaneous stochasticity that does not depend
on boundary conditions.

As long as energy flows from the boundaries, con-
fined turbulence in the middle will dissipate this en-
ergy through singular vortex tubes. This spontaneous
stochasticity results from the random distribution of
these singular tubes within the volume of the velocity
flow33. The dual picture from our recent theory32 rep-
resents these by random gaps in the momentum curve
P⃗ (θ), as we shall discuss in the following sections.

The relation between the energy pumping at the
boundary and the distribution of vortex blobs in the bulk
follows from the Biot-Savart integral:

v⃗(r) = −∇⃗ ×
∫

d3r′ ω⃗(r′)
4π|r − r′|

(9)

Generally, a gradient of harmonic potential is added to
the Biot-Savart integral, dependent on the boundary con-
ditions. We consider the velocity decaying at infinity,
thus not adding such a term.

The net linear momentum
〈∫

d3rv⃗(0) · v⃗(r⃗)
〉
, generally,

is not zero in our theory, as we impose no such restriction.
This nonvanishing linear moment places our theory in the
most general k2 (or Saffman) class.

On a large sphere ∂V with radius R → ∞,

lim
R→∞

R3v⃗(Rn⃗) ∝

1
4π

∑
blobs

∫
blob

d3r′ω⃗(r′) × (r⃗′− < r⃗ >blob) ; (10)
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Here < r⃗ >blob is the geometric center of each blob. Sub-
stituting this into the identity (4), we directly relate the
energy pumped by the forces at the boundary with the
blob’s dipole moments of vorticity.

No forcing inside the flow is needed for this energy
pumping; the energy flow starts at the boundary and
propagates to numerous singular vorticity blobs, where
it is finally dissipated. The distribution of these vorticity
blobs is all we need for the turbulence theory. The forcing
is required only as a boundary condition at infinity.

Another critical comment: with the velocity correla-
tions growing with distance by the approximate K41
law, even the forcing at the remote boundary would influ-
ence the potential part of velocity in bulk. This boundary
influence makes the energy cascade picture non-universal;
it may depend upon the statistics of the random forcing.

Two asymptotic regimes manifesting this non-
universality were observed for the energy spectrum
E(k, t): one for initial spectrum E(k, 0) ∝ k2 and an-
other for E(k, 0) ∝ k4. The potential velocity part dif-
fers for these regimes, as the second one adds a constant
velocity to the Biot-Savart integral to cancel the total
momentum

∫
d3rv⃗. In the general case, it will be a har-

monic potential flow with certain boundary conditions
at infinity, with explicit continuous dependence of the
boundary forces. The most general case is the k2 class,
which does not require any restrictions.

Only the statistics of the rotational part of velocity,
i.e., vorticity, could reach some universal regime inde-
pendent of the boundary conditions at infinity. Certain
discrete universality classes could exist as it is common
in critical phenomena.

Unlike the potential part of velocity, vorticity is lo-
calized in singular regions—tubes and sheets, filling the
space, as observed in numerical simulations. The poten-
tial part of velocity drops in the loop equations, and the
remaining stochastic motion of the velocity circulation
is equivalent to the vorticity statistics. Therefore, our
solutions32 of the loop equations30,31 describe the inter-
nal stochastization of the decaying turbulence by a dual
discrete system.

B. Mathematical Introduction. The loop equation and its
solution

We derived a functional equation for the so-called loop
average or Wilson loop in turbulence in the early nineties.
All the references to our previous works can be found in
a recent review paper31.

The path to an exact solution by a dimensional reduc-
tion in this equation was proposed in the 1993 paper but
has just been explored (see Fig.2). At the time, we could
not compare a theory with anything but crude measure-
ments in physical and numerical experiments at modest
Reynolds numbers. All these experiments agreed with
the K41 scaling, so the exotic equation based on unjus-
tified methods of quantum field theory was premature.

The specific prediction of the Loop equation, namely the
Area law, could not be verified in DNS at the time with
existing computer power.

The situation has changed over the last decades. No al-
ternative microscopic theory based on the Navier-Stokes
equation emerged, but our understanding of the strong
turbulence phenomena grew significantly. On the other
hand, the loop equations technology in the gauge theory
also advanced over the last decades. The correspondence
between the loop space functionals and the original vec-
tor fields was better understood, and various solutions to
the gauge loop equations were found. In particular, the
momentum loop equation was developed, similar to our
momentum loop used below28,29. Recently, some numer-
ical methods were found to solve loop equations beyond
perturbation theory2,22,23. The loop dynamics was ex-
tended to quantum gravity, where it was used to study
nonperturbative phenomena4,53.

All these old and new developments made loop equa-
tions a major nonperturbative approach to gauge field
theory. So, it is time to revive the hibernating theory of
the loop equations in turbulence, where these equations
are much simpler. The latest DNS3,20,21,45 with Reynolds
numbers of tens of thousands revealed and quantified vi-
olations of the K41 scaling laws. These numerical experi-
ments are in agreement with so-called multifractal scaling
laws50.

Theoretically, we studied the loop equation in the con-
finement region (large circulation over large loop C) and
justified the Area law suggested in ’93 on heuristic argu-
ments. This law says that the tails of velocity circulation
PDF in the confinement region are functions of the min-
imal area inside this loop. It was verified in DNS a few
years ago21, which triggered the further development of
the geometric theory of turbulence3,31,45. In particular,
the Area law was justified for flat and quadratic minimal
surfaces, and an exact scaling law in confinement region
Γ ∝

√
Area was derived31. The area law was verified

with better precision in20.
In the previous paper,32, we have found a family

of exact solutions of the loop equation for decaying
turbulence30,31. This family describes a fixed trajec-
tory of solutions with the universal time decay factor.
The solutions are formulated in terms of the Wilson loop
or loop average

Ψ(γ, C) =
〈

exp
(

ıγ

ν

∮
dC⃗(θ) · v⃗

(
C⃗(θ)

))〉
init

; (11)

Ψ(γ, C) ⇒
〈

exp
(

ıγ

ν

∮
dC⃗(θ) · P⃗ (θ)

)〉
E

; (12)

In the first equation (the definition), the averaging ⟨. . . ⟩
goes over initial data for the solutions of the Navier-
Stokes equation for velocity field v⃗(r⃗). In the second one
(the solution), the averaging goes over the space of solu-
tions P⃗ (θ) of the loop equation32. We choose in this pa-
per the parametrization of the loop with ξ = θ

2π to match
with the Fermionic coordinates below (the parametriza-
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tion is arbitrary, in virtue of parametric invariance of the
loop dynamics).

The loop equation for the momentum loop P⃗ (θ) follows
from the Navier-Stokes equation for v⃗

∂tvα = ν∂βωβα − vβωβα − ∂α

(
p +

v2
β

2

)
; (13)

∂αvα = 0; (14)
ωβα = ∂βvα − ∂αvβ (15)

After some transformations, replacing velocity and vor-
ticity with the functional derivatives of the loop func-
tional, we found the following momentum loop equation
in31,32

ν∂tP⃗ = −γ2(∆P⃗ )2P⃗ +

∆P⃗

(
γ2P⃗ · ∆P⃗ + ıγ

(
(P⃗ · ∆P⃗ )2

∆P⃗ 2
− P⃗ 2

))
; (16)

P⃗ (θ) ≡ P⃗ (θ+) + P⃗ (θ−)
2 ; (17)

∆P⃗ (θ) ≡ P⃗ (θ+) − P⃗ (θ−); (18)

The momentum loop has a discontinuity ∆P⃗ (θ) at ev-
ery parameter 0 < θ ≤ 1, making it a fractal curve in
complex space Cd. The details can be found in31,32. We
will skip the arguments t, θ in these loop equations, as
there is no explicit dependence of these equations on ei-
ther of these variables. This Anzatz (12) represents a
plane wave in loop space, solving the loop equation for
the Wilson loop due to the lack of direct dependence of
the loop operator on the shape of the loop.

The superposition of these plane wave solutions would
solve the Cauchy problem in loop space: find the
stochastic function P⃗ (θ) at t = 0, providing the initial
velocity field distribution. Formally, the initial distri-
bution W0[P ] of the momentum field P⃗ (θ) is given by
inverse functional Fourier transform.

W0[P ] =
∫

DCδ3(C⃗[0])Ψ(γ, C)t=0

exp
(

− ıγ

ν

∫
dC⃗(θ) · P⃗ (θ)

)
(19)

In AppendixA, we solve the Cauchy problem for an
exact stationary solution of the Navier-Stokes equation
corresponding to the global rotation with the Gaussian
random rotation matrix. The stochastic function P⃗ (θ)
in (A8), (A14) has a nontrivial Gaussian distribution
with discontinuity ∆P (θ) related to slow 1/n decay of
its Fourier expansion on the parametric circle. This is
the simplest example of the fractal curve we study below
in a decaying solution of the loop equation.

Rather than solving the Cauchy problem, we are look-
ing for an attractor: the fixed trajectory for P⃗ (θ, t) with
some universal probability distribution related to the de-
caying turbulence statistics.

The following transformation reveals the hidden scal-
ing invariance of decaying turbulence

P⃗ =
√

ν

2(t + t0)
F⃗

γ
(20)

The new vector function F⃗ satisfies an equation

2∂τ F⃗ =
(

1 − (∆F⃗ )2
)

F⃗ +

∆F⃗

(
γ2F⃗ · ∆F⃗ + ıγ

(
(F⃗ · ∆F⃗ )2

∆F⃗ 2
− F⃗ 2

))
; (21)

τ = log(t + t0) (22)

This equation is invariant under translations of the
new variable τ = log(t + t0), corresponding to the rescal-
ing/translation of the original time.

t ⇒ λt + (λ − 1)t0 (23)

There are two consequences of this invariance.

• There is a fixed point for F⃗ .

• The approach to this fixed point is exponential in
τ , which is power-like in original time.

Both of these properties were used in32: the first one
was used to find a fixed point, and the second one was
used to derive the spectral equation for the anomalous
dimensions λi of decay t−λi of the small deviations from
these fixed points. In this paper, we only consider the
fixed point, leaving the exciting problem of the spectrum
of anomalous dimensions for future research.

C. The big and small Euler ensembles

Let us remember the basic properties of the fixed point
for F⃗ in32. It is defined as a limit N → ∞ of the polygon
F⃗0 . . . F⃗N = F⃗0 with the following vertices

F⃗k =

{
cos(αk), sin(αk), i cos

(
β
2

)}
2 sin

(
β
2

) ; (24)

θk = k

N
; β = 2πp

q
; N → ∞; (25)

αk+1 = αk + σkβ; σk = ±1, β
∑

σk = 2πpr; (26)

The parameters Ω̂, p, q, r, σ0 . . . σN = σ0 are random,
making this solution for F⃗ (θ) a fixed manifold rather
than a fixed point. We suggested calling this manifold
the big Euler ensemble of just the Euler ensemble.

It is a fixed point of (21) with the discrete version of
discontinuity and principal value:

∆F⃗ ≡ F⃗k+1 − F⃗k; (27)

F⃗ ≡ F⃗k+1 + F⃗k

2 (28)
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Both terms of the right side (21) vanish; the term propor-
tional to ∆F⃗ and the term proportional to F⃗ . Otherwise,
we would have F⃗ ∥ ∆F⃗ , leading to zero vorticity32. The
ensemble of all the different solutions is called the big
Euler ensemble. The integer numbers σk = ±1 came as
the solution of the loop equation, and the requirement of
the rational p

q came from the periodicity requirement.
We can use integration (summation) by parts to write

the circulation as follows (in virtue of periodicity):∮
dC⃗(θ) · P⃗ (θ) = −

∮
dP⃗ (θ) · C⃗(θ); (29)∑

k

∆CkP⃗k = −
∮

∆P⃗k · C⃗k; (30)

A remarkable property of this solution P⃗ (θ, t) of the
loop equation is that even though it satisfies the com-
plex equation and has an imaginary part, the resulting
circulation (29) is real! The imaginary part of the P⃗ (θ, t)
does not depend on θ and thus drops from the integral∮

dP⃗ (θ, t) · C⃗(θ).
There is, in general, a larger manifold of periodic so-

lutions to the discrete loop equation, which has all three
components of F⃗k complex and varying along the poly-
gon.

We could not find a global parametrization of such
a solution47. Instead, we generated it numerically by
taking a planar closed polygon and evolving its vertices
F⃗k by a stochastic process in the local tangent plane to
the surface of the equations in multi-dimensional complex
space.

We could not submit such a solution to an extra re-
striction Im F⃗k = const needed to make circulation
real. We cannot prove that such a general solution does
not exist but rather take the Euler ensemble as a working
hypothesis and investigate its properties.

This ensemble can be solved analytically in the statis-
tical limit and has nice physical properties, matching the
expected behavior of the decaying turbulence solution.

We assign equal weights to all elements of this set;
we call this conjecture the ergodic hypothesis. This pre-
scription is similar to assigning equal weights to each tri-
angulation of curved space with the same topology in
dynamically triangulated quantum gravity1. Mathemat-
ically, this is the most symmetric weight assignment, and
there are general expectations that various discrete the-
ories converge into the same symmetry classes of contin-
uum theories in the statistical limit. This method works
remarkably well in two dimensions6,11,16, providing the
same correlation functions as continuum gravity (Liou-
ville theory24).

The fractions p
q with fixed denominator are counted by

Euler totient function φ(q)18

φ(q) =
q−1∑
p=1
(p,q)

1 = q
∏
p|q

(
1 − 1

p

)
; (31)

For example φ(16) = 8 and φ(17) = 16.
In some cases, one can analytically average over spins

σ in the big Euler ensemble, reducing the problem to
computations of averages over the small Euler ensemble
E(N) : N, p, q, r with the measure induced by averaging
over the spins in the big Euler ensemble.

V. THE FERMI RING AND ITS CONTINUUM LIMIT

In this paper, we perform this averaging over σ ana-
lytically, without any approximations, reducing it to a
partition function of a certain quantum mechanical sys-
tem with Fermi particles. The Quantum Trace Theo-
rem, establishing this connection (B14) is proven in Ap-
pendix B. This partition function is calculable using a
WKB approximation in the statistical limit N → ∞. As
we shall shortly see, in the continuum limit N → ∞,
the accumulated numbers of Fermi particles νk = 1
and Dirac holes νk = 0 tend to some classical function∑

l<k(2νl − 1) → α(ξ) of ”position” ξ = k
N , leading to

the exact solution.
Specifically, as we prove in Appendix C, the loop func-

tional in continuum limit N → ∞ reduces to a quantum
mechanical path integral (C29) over the Fermion density
α(ξ). The effective Action for this path integral is given
by circulation ıΓ expressed in terms of this density plus a
quadratic functional corresponding to Brownian measure
(C26) for α(ξ).

Thus, there are three sources of fluctuations: There is
a phase factor related to the circulation, there is a Brow-
nian positive distribution of the trajectory α(ξ)(Gaussian
measure), and finally, the circulation depends on the ran-
dom fraction p

q distributed according to the small Euler
ensemble. The continuum limit of the latter distribu-
tion is derived in Appendix E, using new cotangent sums
derived in the previous paper32.

This is a new kind of quantum mechanical system with
a complex Action, reflecting the irreversibility of turbu-
lence. The square root of viscosity enters the denomina-
tor of the effective Action, like a coupling constant. As
we argued in the previous paper, the turbulent limit of
our theory corresponds to

ν → ν̃

N2 → 0 (32)

The parameter ν̃ remains a free parameter of our the-
ory, playing the role of turbulent viscosity. In particular,
there is an anomalous energy dissipation in this limit

E(t) = ν̃

t2 F (k2
0 ν̃t); (33)

F (0) = π2

864ζ(3) ; (34)

Here k0 is the lower cutoff of the energy spectrum (to be
discussed below). The decaying spectrum at small wave
vectors k < k0 is related to the energy pumping at the
initial moment t = t0 and is time-independent.
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The dimensionless parameter N → ∞ plays the role of
the Reynolds number. We derive the turbulent limit N =
2m → ∞ without any 1/N corrections. This solution will
then apply to the inertial range of the physical turbulence
in a system with a finite but large Reynolds number.

VI. INSTANTON IN THE PATH INTEGRAL

This classical equation for our path integral reads (with
Ω ∈ O(3) being a random rotation matrix):

α′′ = −ıκ (C′
Ω exp (ıα) + (C′

Ω)⋆ exp (−ıα)) ; (35)

κ = 1
2πy

√
X

√
2νt

; (36)

CΩ(θ) = C⃗(θ) · Ω̂ · {ı, 1, 0}; (37)

The parameter κ is distributed according to the distri-
butions (E7), (E13) of the variables X, y in a small Euler
ensemble in the statistical limit.

This complex equation leads to a complex classical so-
lution (instanton). It simplifies for z = exp (ıα):

z′′ = (z′)2

z
+ κ

(
C′

Ωz2 + (C′
Ω)⋆
)

; (38)

z(0) = z(1) = 1 (39)

This equation cannot be analytically solved for arbitrary
periodic function C ′

Ω(ξ).
The weak and strong coupling expansions by κ are

straightforward. At small κ

z(ξ) → 1 + 2κ

(
−Aξ +

∫ ξ

0
Re CΩ(ξ′)dξ′

)
+O(κ2); (40)

A =
∫ 1

0
Re CΩ(ξ′)dξ′ (41)

At large κ

z(ξ) → ı exp (−ı arg C′
Ω(ξ)) = ı

|C′
Ω(ξ)|

C′
Ω(ξ) (42)

This solution is valid at intermediate ξ, not too close to
the boundaries ξ = (0, 1). In the region near the bound-
aries ξ(1−ξ) ≪ 1√

κ
, the following asymptotic agrees with

the classical equation

z → 1 ± ıξ
√

2κRe C ′
Ω(0) + O(ξ2); (43)

z → 1 ± ı(1 − ξ)
√

2κRe C ′
Ω(1) + O((1 − ξ)2); (44)

One can expand in small or large values of κ and use the
above distributions for X, y term by term.

As it was noticed above, the viscosity ν = ν̃
N2 → 0 in

our theory. This limit makes κ ∼ N → ∞, justifying the
strong coupling limit for the Wilson loop solution.

The classical limit of the circulation in exponential of
(C29)∫ 1

0
dξIm (C′

Ω(ξ) exp (ıα(ξ))) →
∫ 1

0
dξ |C′

Ω(ξ)| (45)

becomes a positive definite function of the rotation ma-
trix Ω. At large κ the leading contribution will come
from the rotation matrix minimizing this functonal.

Let us think about the physical meaning of this finding.
We have just found the density of our Fermi particles on
a parametric circle

α(ξ) = π

2 − arg C′
Ω(ξ) (46)

This density does not fluctuate in a turbulent limit, ex-
cept near the endpoints ξ → 0, ξ → 1. In the vicinity
of the endpoints, there is a different asymptotic solution
(43) for α → (z − 1)/ı.

Compute the Wilson loop for a specific loop, say, the
circle, is an interesting problem, but there is a simpler
quantity. In the next section we are considering an im-
portant calculable case of the vorticity correlation func-
tion, where the full solution in quadratures is available.
This function has been directly observed in grid turbu-
lence experiments1,10 more than half a century ago and
is being studied in modern large-scale real and numerical
experiments25,43,49.

This is the vorticity correlation function31, correspond-
ing to the loop C backtracking between two points in
space r⃗1 = 0, r⃗2 = r⃗, with the vorticity operators are
inserted at these two points (see32 for details and the
justification). The Fourier transform of this function de-
scribes the decaying energy spectrum, also measured ex-
perimentally.

In Appendixes F, G, H, we express this correlation
function as a particular case of the second variation of
the loop functional. Then, in Appendixes I, J, we com-
pute the path integral in the leading WKB approxima-
tion. This is a one-dimensional version of the instanton
computations, familiar to the gauge theory experts. In
the turbulent limit N → ∞, ν̃ = const , there are no
higher order corrections to this WKB approximation of
the path integral.

VII. THE DECAYING ENERGY IN FINITE SYSTEM

The vorticity correlation in Fourier space doubles as
an energy spectrum

E(k, t) = 4πk⃗2 ⟨v⃗ · v⃗k⟩ = 4π ⟨ω⃗ · ω⃗k⟩ (47)

The energy spectrum in a finite system with size L is
bounded from below. At low |⃗k| ≤ π/L, the spectrum is
no longer related to the turbulence but is given by the
energy pumping by external forces at the boundaries.

This energy pumping43,49 takes place at t < t0, after
which the pumping stops. At this moment, the energy
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spectrum is growing with wavevector by one of two pos-
sible laws (with P being the Birkhoff-Saffman invariant
of the fluid and M being the Loitzansky invariant){

E(k, t) ∝ Pk2

E(k, t) ∝ Mk4 (48)

The small k limit of the spectrum is time-independent as
both P and M do not depend of time.

At t > t0, without the forcing, the pumped energy dis-
sipates at large k corresponding to smaller spatial scales
of the hierarchy of vortex structures of all scales, ending
with dissipative scales, or wavevectors k ≫ π/L. Af-
ter sufficient time, the universal regime kicks in, corre-
sponding to the decaying turbulence. It is implied that
a large amount of energy was pumped in, so it takes a
long time to reach this decaying regime, corresponding
to some fixed trajectory.

Our solution does not impose any restrictions on the
SB invariant P and thus applies to the most general, first
regime with k2 spectrum at small k and some universal
decay at large k, reflecting these distributed vortex struc-
tures.

The decaying energy Ed(t), given by the part of the
spectrum k > k0 ∼ 1/L, has the following form

Ed(t) =
∫ ∞

k0

dkE(k, t) ∝ 4πν̃

t

∫ ∞

k0
√

ν̃t

H(κ)dκ (49)

On top of the trivial decrease ν̃
t , as prescribed by di-

mensional counting in an infinite system, there is some
extra decrease related to the increase of the lower limit.

A. Computation of the energy dissipation

The energy in our theory does not have a finite statis-
tical limit because of the contribution from the unknown
potential part of velocity. This contribution could be infi-
nite in the infinite system. Thus, we compute the energy
by integrating its time derivative (i.e. the dissipation rate
−E(t) ) given the zero energy left at infinite time.

E(t) =
∫ ∞

t

E(t′)dt′ (50)

This energy dissipation rate E(t′) is calculable

E(t) ∝ 4πν

∫
dk k2

〈
ω⃗(⃗0) · ω⃗(k⃗)

〉
=

4π
ν̃

t2

∫ ∞

k0
√

ν̃t

κ2H(κ)dκ (51)

In our theory, this integral has a finite limit in an infi-
nite system (k0 = 0).

This limit was computed in32 in a slightly different
grand canonical ensemble, where N was fluctuating with
the weight exp (−µN) , µ → 0.

With our current ensemble of fixed even N → ∞ the
results of32 read:

E∞(t) = ν̃

t2
π2

864ζ(3) ; (52)

In our present theory, the same quantity is given by the
above integral at k0 = 0

E∞(t) = 4π
ν̃

t2

∫ ∞

0
κ2H(κ)dκ (53)

Comparing these two expressions, we get the normaliza-
tion of H(κ)

4π

∫ ∞

0
κ2H(κ)dκ = π2

864ζ(3) (54)

The integral on the left can be further reduced40 to the
following normalization condition:

Z =
276480ζ(3)ζ

( 15
2
)

119ζ
( 17

2
) ∫ ∆2

∆1

d∆P (∆)
Q(∆) ; (55)

P (∆) = (1 − ∆)
√

r0(∆)S(∆)Qα(∆, 1)
(πJ(∆) (r0(∆) + 12) + L(∆) (r0(∆) − 6)) ; (56)
Q(∆) = L(∆)2 (r0(∆) + 12) ; (57)

This normalization constant Z can be used in equation
(49) for the energy decay in a finite system. All the
functions of ∆ were defined above.

As for the energy spectrum, this is not an independent
function in our theory. Comparing the two expressions
(47) and (51), we arrive at the following relation

t2E(t) = 4πν̃F
(

k0
√

ν̃t
)

; (58a)

F (κ) =
∞∫

κ

H(x)x2 dx, (58b)

√
tE(k, t) ∝ 4πν̃

√
ν̃H

(
k
√

ν̃t
)

; (58c)

Both the energy dissipation and the energy spectrum
are related to the same function H(κ), but the en-
ergy spectrum related to this function at large argument
κ = k

√
ν̃t, whereas the energy dissipation is related to

integral of this function from small argument κ = k0
√

ν̃t
to infinity.

Our theory does not have the Saffmann part of the
spectra; it only applies to an infinite system described
by the region k > k0. At the boundary of this region, we
have the value of the spectrum (assuming k0

√
ν̃t ≪ 1)

E(k0, t) ∝ 4π√
t
ν̃
√

ν̃H
(

k0
√

ν̃t
)

∼ 4πH(0)ν̃
√

ν̃√
t

(59)

This will match the Saffman spectrum Pk2 at small k

k ∼ ν̃
3/4t−1/4P −1/2 (60)

This boundary value decays as t−1/4; it is below the value
k0 ∼ 1/L, which is time-independent. We are not con-
sidering extremely large times such that k0

√
ν̃t ≫ 1. At
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Figure 9. The effective index n(t) = − tE(t)
E(t) compared with

asymptotic value n(∞) = 5/4.

these times, the decay is over: there is not enough en-
ergy left for turbulence, and the whole pumped energy
has dissipated.

We computed the universal function H(κ) in the
Appendix K and numerically integrated it to obtain
F (κ), κ = k

√
ν̃t. Asymptotically, at large k

√
ν̃t

E(k, t) ∝ ν̃
√

ν̃√
t

(
k
√

ν̃t
)−7/2

; (61)

E(t) ∝ t−9/4; (62)

E(t) =
∫ ∞

t

E(t′) dt′ ∝ t−5/4 (63)

We computed the effective critical indexes

n(t) = −t∂t log E = − tE(t)
E(t) ; (64)

s(κ) = −κ∂κ log H(κ) (65)

numerically in the Appendix K, using Mathematica®. The
accuracy is just 4-5 digits, but it can be easily im-
proved by taking more CPU time once experimental data
gets more precise. These curves are universal, and they
change the regime before approaching their limits from
below n(∞) = 5

4 , s(∞) = 7
2 . These regime changes are

due to the quantum effects (complex zeros of the zeta
function contributing to the energy spectrum’s Mellin
transform, as shown in Appendix K).

The experimental data9,10 yields n(∞) ≈ 1.25 ± 0.02,
which agrees with our theoretical prediction in Fig.9.
Our universal curves for n(t), s(κ) were computed di-
rectly from the analytic solution of the loop equation in
the turbulent limit without any fitting parameters. It will
be very interesting to compare these curves with more
precise experiments (real or numerical).

B. The energy normalization problem

The above formulas do not specify the energy spec-
trum’s normalization, just the energy dissipation’s nor-
malization. When one tries to recover the normalization
of the energy spectrum, the following problem arises.

The normalization of the decaying energy (49) seems
incompatible with its time derivative (51). In conven-
tional turbulence models, the integral for dissipation di-
verges at large wavelengths, reflecting the singular vortex
structures such as the Burgers vortex filaments59 with
viscous thickness w ∼

√
ν. Integrating the square of vor-

ticity in the Burgers vortex in the transverse plane, we
get a large factor 1/ν; this compensation leads to anoma-
lous dissipation E = ν

〈
ω⃗2〉. independent of ν.

In our dual theory, this factor of ν is compensated
by a different mechanism: the vorticity is represented as
a discontinuity at the curve P⃗ (θ) in our solution: ω⃗ ∝
P⃗ × ∆P⃗ . Summing over a large number N → ∞ of
these discontinuities leads to the factor N2 compensating
small viscosity ν factor in front of the enstrophy. The
enstrophy integral

∫
dkk2 ⟨ω⃗ · ω⃗k⟩ converges at large k.

As a consequence, the vorticity correlation ⟨ω⃗ · ω⃗k⟩ ∼
1/ν is large at all k, not just at large k. Our limit
ν → 0, N → ∞ applies to the computation of integrated
quantities such as total decaying energy but not to the
energy spectrum as a function of wavelength.

The problem boils down to the following. The turbu-
lent limit differs from the inviscid limit of the Navier-
Stokes equation. In the turbulent limit, the average cir-
culation Γ is much larger than viscosity, but the dimen-
sional scales, determined by viscosity, stay finite.

To be more specific, the enstrophy in our system has
the structure 〈

ω⃗2〉 = E(t, |Γ|/ν)
ν

(66)

The dissipation E(t, |Γ|/ν) depends on time and the effec-
tive Reynolds number Rey = |Γ|/ν where Γ is a typical
velocity circulation in our problem.

The turbulent limit corresponds to |Γ| ≫ ν, rather
than ν → 0. Mathematically, we are looking for a residue
of the enstrophy at zero viscosity

〈
ω⃗2〉 → E(t, ∞)

ν
(67)

However, in the real physical world (or in the DNS), we
shall use this formula for finite ν corresponding to the
actual viscosity of water. We only use our dual theory to
compute this residue Resν=0

〈
ω⃗2〉 = E(t, ∞).

〈
ω⃗2〉 → E(t, ∞)dual

ν
(68)

In particular, in the infinite system (k0 = 0), we have the
value (52) computed in the previous paper.

This comparison restores the normalization of the vor-
ticity correlation and the energy spectrum〈

ω⃗(⃗0) · ω⃗(k⃗)
〉

=
ν̃

5/2H
(
k
√

ν̃t
)

ν
√

t
; (69)

√
tE(k, t) =

4πν̃
5/2H

(
k
√

ν̃t
)

ν
(70)
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where ν is the physical viscosity of the fluid under consid-
eration (say, water) and ν̃ is the auxiliary scale parameter
that comes from the dual theory in the turbulent limit.

Our theory has two unknown parameters: ν̃ and t0.
The energy spectrum decreased faster than k−3 so that
the enstrophy integral

∫
H(κ)κ2dκ converges at large κ

and so does the energy integral
∫

H(κ)dκ.
As we shall see in the next section, this fast decay of

the energy spectrum also happens in DNS, in qualitative
agreement with our decay κ−7/2.

The presence of a hidden second scale ν̃ in our theory
invalidates the formal scale invariance of Navier-Stokes
equation used to determine the dependence of the en-
ergy spectrum from viscosity in the Onsager-like scaling
theories12. This phenomenon of the hidden finite scale in
the field theory is the same as dimensional transmutation
in QCD, where the UV divergences combined with van-
ishing bare coupling constant create a finite mass scale.
The physical origins of the hidden scale in Navier-Stokes
equation are the thermal fluctuations of the initial veloc-
ity field at molecular scales, amplified in a turbulent flow
to spontaneous stochasticity.

VIII. COMPARING OUR THEORY WITH THE DNS

As the first such test of our theory, we took the raw
DNS data from49, provided to us by the authors. This
data is now available online43 and can be downloaded
without permission. We only compared the data corre-
sponding to our k2 case and restricted ourselves to four
samples with the largest grid 10243, labeled as sample
13, 14, 15, 16.

First, we verify the decay of the Reynolds number
for each sample, as our theory only applies to the large
Reynolds numbers. These plots are shown in Fig. 10. As
we see from these plots, all four Reynolds numbers are
modest, but the sample 14 stands out as the closest to
the strong turbulence we seek.

The next test is the effective length scale, which we
define as

L(t) =
∫

E(k, t)kdk∫
E(k, t)k2dk

; (71)

The effective length L(t) as a function of time is shown
in Fig.11. The statistical equilibrium was not yet
reached at t < 1000, so we discarded this period. The
late stages of decay where L(t) ∝ t correspond to low
Reynolds number and do not agree with our theory: we
interpret it as the non-turbulent stage of decay when the
remaining energy is insufficient for the strong turbulence
phase.

The next test is the energy decay curve E(t) for the
turbulent region of sample 14.

E(t) =
∫

E(k, t)dk; (72)

log E(t) ≈ a + f(b + log L(t)) (73)
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Figure 10. The time decay of Reynolds numbers for each of
the four samples from43,49
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Figure 11. The log-log plot of the effective length L(t) for the
sample 14 from43,49. The turbulent part, 1000 < t < 8000,
closely fits our theory L(t) ∝

√
t.

Our theory has two free parameters t0, ν̃. The fitting of
t0 is not trivial as we do not know which time range cor-
responds to the universal regime of the decay but still
contains enough energy left for the strong turbulence.
Following the suggestion of54, we avoid fitting t0 by in-
vestigating the decaying energy as a function of the decay
length L(t), which in our case scales as

√
ν̃(t + t0). The

precise definition was given in (71).
The parameters a, b were fitted by nonlinear regres-

sion using ”NonlinearModelFit” in Mathematica®. The
resulting log-log plot is shown in(Fig. 12). The fit is per-
fect, with less than one percent of the standard deviation.
This relation is approximately linear with the slope − 5

2 .
Note also that the asymptotic index − 5

2 comes as a ratio
of the energy decay index − 5

4 to the index m = 1/2 for
L(t) which we already tested. Let us now turn to the
energy spectrum. The data is not as good here as the
energy decay data for two reasons. First, each wave vec-
tor component has only L = 512 independent values on
a 1024 grid.

The energy spectrum is a function of the length of the
wavevector, which is taking O(L(L+1)(L+2)/6) different
values between 0 and L

√
3

2 . Unfortunately, the available
data43,49 aggregates the statistics at 512 equidistant bins
in |⃗k|, reducing statistics. The large number of rank bins
(by an equal number of data points in each bin) would
give us much more information about the spectrum.
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Figure 12. The log-log plot of the decaying energy as a func-
tion of decaying length scale L(t). Red dots are the DNS data,
the green curve is an exact theoretical curve, and the dashed
blue line is its asymptotic limit E(t) ∝ L(t)−5/2 corresponding
to E ∝ t−5/4.

We have a scaling law E(k, t) = H(k
√

t+t0)√
t+t0

, which
means that the two-dimensional array of the data for
E(k, t) must collapse at one-dimensional subset.

We already saw the consequence of that collapse in
the scaling law for L(t). However, the low k part of the
spectrum is discrete and corresponds to lattice artifacts.

We found the following method to avoid choosing the
range of discrete wavelengths or fitting any scale param-
eters. First, we consider the Mellin transform of the en-
ergy spectrum, normalized at p = 0 together with its
derivative

M(p, t) =
e−αp

∫
dkE(k, t)(kL(t))p∫
dkE(k, t) ; (74)

α =
〈∫ dkE(k, t) log[(kL(t))]∫

dkE(k, t)

〉
t

; (75)

∂p ⟨M(p, t)⟩t = 0; (76)

The coefficient α corresponds to the global scaling factor
in the momentum k. Our definition of p differes from
conventional p′ = −p − 1.

This function does not depend on time in the turbulent
region described by our theory. So, all DNS data must
collapse on a single universal curve. The K41 theory
would correspond to a single pole at p = 2

3 , which means
for the normalized function

MK41(p, t) =
exp

(
− 3

2 p
)

1 − 3
2 p

; (77)

We computed this Mellin integral for the DNS data
and compared it with our theory as well as K41. (see
Fig.13). We fitted the global scaling factor α in our the-
ory to the DNS data by means of mean squares for the
log ⟨M(p, t)⟩t. (see37). Our match with DNS is good but
not perfect, perhaps due to finite size effects on 1K lattice
and finite Reynolds number Rey ∼ 80.

The K41 is totally wrong here. There is no pole at
p = 2

3 as prescribed by K41. Large systematic errors
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Figure 13. The Mellin integral (74) for the DNS (red dots
with error bars), our theory (green curve) and K41 pole term
(77), shown as a blue curve.

invalidate the DNS Mellin transform with large positive
p, dominated by lattice artifacts at large k.

Now, consider the second moment of velocity, related
to the energy spectrum by Fourier transform

〈
∆v⃗2〉 (r) =

∫
d3k

4π3

(
1 − eık⃗·r⃗

)
E(k, t)

4πk⃗2
; (78)〈

∆v⃗2〉 (r) =
〈

(v⃗(r⃗, t) − v⃗(0, t))2
〉

(79)

There is a sharper test, namely the effective index
ξ2(r, t) defined as a log-log derivative of this second mo-
ment

ξ2(r, t) = r∂r log
〈
∆v2〉 (r) =∫∞

0 dk
(

− cos(kr) + sin(kr)
kr

)
E(k, t)∫∞

0 dk
(

1 − sin(kr)
kr

)
E(k, t)

; (80a)

⟨ξ2(xL(t), t)⟩t = f(x); (80b)

This universal function f(x) is numerically well defined
as the integration over the spectrum suppresses the noise
related to lattice discretization unless the dimensionless
coordinate x is too large.

In the K41 theory, this index is 2
3 , so one would expect

at least a plateau of nearly K41 values in the inertial
range of space scales. This index would have a higher
constant value in multifractal models, around 0.7. Fig.14
shows what we found instead for the DNS data43,49.

This time, the theoretical curve (green line) goes out-
side the error bars, which means a lack of a global fit.
Both curves are far from any constant value, so Kol-
mogorov and multifractal are out of the competition.
However, the left parts of the theoretical and DNS curves,
with f > 0.5, are almost parallel in log x scale. The larger
values of x do not match so closely, and the error bars
are bigger there, likely because of lattice artifacts in DNS.
These left parts, however, can be moved on top of each
other by properly choosing the length scale in our theory.

We tested this hypothesis by selecting the left side of
this plot and adjusting the length scale in the theoretical
line to get on top of the DNS data (shifting the green
curve horizontally by a mean distance to the red curve).
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Figure 14. The plot of f(x) in (80) as a function of log x (red
dots with error bars). The green curve is the theoretical index
without adjustment of the coordinate scale, and the dashed
blue line is the K41 constant value 2

3 .
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range. The K41 2
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charts.

Here is the result of this selection/shifting (see Fig.15).

The theoretical curve (green line) is shifted left by some
amount δ log x = s to minimize the mean square of the
horizontal distance in the turbulent range. This shift cor-
responds to the adjustment of the length scale in our the-
ory. The curves now match up to the standard deviation
of the DNS. The time limit T0 < t < T1 of decaying tur-
bulence was chosen to ensure the diffusion law L(t) ∝

√
t.

These DNS completely rule out the K41 scaling law 2
3 .

We recently encountered real experiments for com-
pressible decaying turbulence in wind tunnels and
atmosphere25. Our theory assumes incompressibility, so
it doesn’t apply to these data in the air turbulence. Also,
the magnitude of the errors in25 is unclear.

Nevertheless, we still compared our prediction for the
second moment with the air data from25. The shape of
the experimental curve for

〈
∆v2〉 (r) (Fig. 1 in25 ) is

similar to ours. It significantly deviates from the K41
prediction: instead of a straight line in the log-log scale,
there is a curved line with the slope varying from 2 to 0
as r varies from zero to infinity, the same as our curves.
There is no plateau at 2

3 slope (Fig.1 in25; the slope lin-
early decreases with log r, similar to our decreasing slope

in Fig. 14.
However, the numerical values for the slope and curva-

ture in25 are quite different from those we derived above
from the incompressible DNS43,49, which fits our theory
within the error bars. The origin of such a big discrep-
ancy is unclear to us. Compressibility alone seems un-
likely to explain such a large deviation from incompress-
ible DNS.

It is difficult to estimate the slope of the measured
data numerically25 without increasing errors, which are
already large enough in the data in43,49. Unlike numer-
ical differentiation of the wind tunnel data, the Fourier
integration of the DNS data suppresses the noise, which
makes the DNS data for effective index ξ2(r) much more
accurate.

We conclude that our theory passed its first test
with flying colors, but a more detailed comparison
with new large DNS or experiments is desirable.

IX. THE SPECTRUM OF SCALING DIMENSIONS

In addition to numerically computing the energy spec-
trum and plotting effective critical indexes, we can go one
step further in the mathematical analysis of the concept
of the scaling laws in turbulence.

In a scale-invariant theory, the Mellin transform of the
correlation function in coordinate or momentum space is
a meromorphic function. The spectrum of critical in-
dexes is given by the positions of poles of this function in
a complex plane. The whole spectrum of critical indexes
is real in the theory of critical phenomena, described by
a Conformal Field Theory (CFT).

As we shall prove below, our theory is scale-invariant
by this definition, but it is not a CFT. In particular,
some critical indexes come in complex conjugate pairs,
reflecting the dissipative nature of our turbulence theory.

A. The energy spectrum

The spectral density H(κ) is in (J9). The Mellin trans-
form is the following integral, assuming our function de-
creases at infinity.

H(κ) =
∫ −ϵ+ı∞

−ϵ−ı∞

dp

2πı
h(p)κp; (81)

h(p) =
∫ ∞

0

dκ

κ
κ−pH(κ) (82)

We change the sign of p in conventional definition to bet-
ter describe our functions.

The pure power law of decay would correspond to the
Mellin transform h(p) having a single pole in the left
semi-plane. The position p = −a of this pole becomes an
index of the power law.

H(κ) ∝ κ−a (83)
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Figure 16. Complex poles of the Mellin transform h(p) of
H(κ) in (85) defining the critical indexes of the energy spec-
trum as a function of κ = |⃗k|

√
ν̃t.
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Figure 17. Complex poles of the Mellin transform e(q) of E(t)
in (91) defining the spectrum of critical indexes of remaining
energy as a function of time.
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Figure 18. The spectrum of (complex) indexes of the power
expansion of the velocity correlation function. The poles in
the right semiplane determine the small-distance expansion
of the correlation function v⃗(0) · v⃗(r) ∼

∑
n

On|r⃗|pn .

The next level of complexity would be a function, de-
pending on an extra parameter n, such that the Mellin
transform has a simple pole, moving with this parame-
ter p = a(n). In application to the moments of velocity
difference, this parameter n is the degree of the moment
Mn = ⟨∆vn⟩. This pole will produce multifractal scaling
laws

Mn ∼ ra(n) (84)

Our energy spectrum has a more complex singularity
structure in its Mellin transform

h(p) =
f(p)ζ

(
p + 15

2
)

Γ(−p)
(2p + 7)(2p + 17)ζ

(
p + 17

2
) ; (85)

f(p) = 20
∫ ∆2

∆1

d∆(1 − ∆)Cp−1(AC − Bp) (86)

where A, B, C are some smooth positive functions of ∆
varying in finite limits (see Appendix K). Given these
properties, it is simple to prove that the Taylor series of
f(p) at the origin converges as the expansion coefficients
decrease as a factorial of the expansion order.

This convergence makes this function an entire func-
tion without any finite singularities. The values of C(∆)
are bounded by two positive limits

0.0541984 < C < 0.0630755, ∀∆1 < ∆ < ∆2 (87)

Therefore, the entire function f(p) decreases as e−2.76342p

in the right semiplane and grows as e−2.9151p in the left
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semiplane. It oscillates along an imaginary axis, which is
our integration path.

Theoretically, f(p) could vanish at one or more posi-
tions of the poles of the remaining meromorphic function,
eliminating these poles. We computed f(p) at the lowest
poles and ensured it was far from zero. However, can-
celing some higher poles by the root of f(p) remains an
open problem.

The singularities of the Mellin transform h(p) for the
energy spectrum H(κ) are given by the following table of
simple poles∣∣∣∣∣∣∣∣∣∣∣∣∣

energy spectrum indexes
−7/2
−13/2

−8 ± ıtn if n ∈ Z
−17/2 − 2n if n ∈ Z ∧ n ≥ 0

n if n ∈ Z ∧ n ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
(88)

Here ±tn are imaginary parts of zeros of the ζ function
on the critical line z = 1/2 + ıt. About 1013 zeros are
already known, though the Riemann hypothesis (no other
complex zeros) still needs to be proven. These poles are
shown in Fig. 16.

Only poles with negative real parts contribute to the
power expansion at κ → ∞. The real negative poles yield
decaying power terms, but the infinite series of complex
poles at Riemann zeros adds the oscillations in log scale

|Wn|κ−8 cos (tn log κ + arg Wn) (89)

These slow oscillations are visible as regime change in the
log-log plots of effective indexes in Fig.9, Fig. 7.

As we already discussed above, the energy spectrum
decays as t−9/4k−7/2. The wavelength decay at a fixed
time is faster than K41 k−5/3. There is no theoretical
reason (even at the level of heuristic) for K41 in decaying
turbulence, as the dissipation E(t) is not a constant, so
it cannot be used as a single scaling parameter.

There is, however, an apparent contradiction between
our fast decay k−7/2 of the energy spectrum and the
bounds on this decay index established by Sulem and
Fricsh58.

At a closer look, this paradox is explained by an as-
sumption made in58 that the whole energy dissipation is
caused by the Kolmogorov-like flux v⃗ · (v⃗ · ∇⃗)v⃗. The vis-
cous contribution νω⃗2 to the dissipation was neglected
in that paper: they assumed that it ”converges to zero
as ν → 0”. Thus, their bound on decay index implies
that our dissipation has zero Kolmogorov energy flux;
therefore, it is dominated by the dissipative anomaly
E = limν→0 ν

〈
ω⃗2〉, missed in that old paper.

Our theory, based on the exact solution of the Navier-
Stokes equation, does not need any assumptions about
the ”energy cascade” or ”Kolmogorov energy flux.” In
the physical picture described in subsection IV A, there
is no such flux: the energy pumped from the bound-
aries (such as an oscillating grid in the grid turbulence

experiment10) is dissipated in the thin vortex filaments
due to dissipative anomalies of such filaments.

B. The energy decay

The energy E(t) is related to the same function

E(t) =
∫ ∞

t

dtE(t) =

4πν̃

∫ ∞

t

dT

T 2

∫ ∞

k0
√

ν̃T

H(x)x2dx (90)

Substituting the Mellin transform for H(x) and inte-
grating twice, we get the Mellin transform for the energy

E(t) =
∫ −1−ϵ+ı∞

−1−ϵ−ı∞

dq

2πı
e(q)

(
k2

0 ν̃t
)q ; (91a)

e(q) = 2πk2
0 ν̃2 h(2q − 1)

q(q + 1) (91b)

The table of complex poles of this function is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

energy decay indexes
−5/4
−11/4

−7/2 ± ı/2tn if n ∈ Z

−15/4 − n if n ∈ Z ∧ n ≥ 0
n/2 if n ∈ Z ∧ n ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(92)

These poles are shown in Fig.17. The leading pole is at
p = −5/4, corresponding to the asymptotic decay we com-
pared to the grid turbulence decay data. Only poles with
negative real parts contribute to the large t expansion.

C. The velocity correlation function in coordinate space

Let us transform the velocity correlation back to coor-
dinate space from Fourier space〈

∆v⃗2〉 (r) =

2
∫

d3k

(2π)3

(
1 − exp

(
ı⃗k · (r⃗)

)) E(k, t)
4πk⃗2

=

ν̃2

π2νt

∫ ϵ+ı∞

ϵ−ı∞

dp

2πı

(
|r⃗ − r⃗′|√

ν̃t

)p

cos
(πp

2

)
Γ(−p − 1)h(−1 − p); (93)〈

∆v⃗2〉 (r) =
〈

(v⃗(r⃗, t) − v⃗(0, t))2
〉

(94)
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Figure 19. The universal function (95) as a function of ρ =
|r⃗|/

√
ν̃t. The turnover is caused by subleading terms in the

power expansion starting with ρ2. The next terms involve
quantum oscillations manifesting as a turnover from power
growth to power decay. Asymptotic at large ρ is const as it
follows from the table (97) of the decay indexes.

The Mellin transform simplifies to〈
∆v⃗2〉 (r) =

ν̃2

νt

∫ ϵ+ı∞

ϵ−ı∞

dp

2πı
V (p)

(
|r⃗ − r⃗′|√

ν̃t

)p

; (95)

V (p) =

−
f(−1 − p)ζ

( 13
2 − p

)
csc
(

πp
2
)

16π2(p + 1)(2p − 15)(2p − 5)ζ
( 15

2 − p
) (96)

The poles of this function in the right semiplane repre-
sent the indexes of the power singularities of the velocity
correlation function at coinciding points (0, r⃗). Should
our theory be a CFT (which it is not), this spectrum
would be related to the spectrum of anomalous dimen-
sions ∆n in the OPE:

CFT: v⃗(0) · v⃗(r) ∼
∑

n

On|r|pn ; pn = 2∆v − ∆n;

We have such an expansion with |r⃗|√
ν̃t

in place of |r| and a
factor ν̃2

νt in front. The spectrum of these scaling indexes
pn (unrelated to a dilatation operator as far as we know)
is given in the following table:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

indexes of velocity correlation
−1
0

2n if n ∈ Z ∧ n ≥ 1
5/2

11/2

1/2(15 + 4n) if n ∈ Z ∧ n ≥ 0
7 ± ıtn if n ∈ Z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(97)

The poles in the complex p plane are shown in Fig.18.
We have no CFT but a calculable spectrum of scaling

dimensions. Unlike the CFT in three dimensions, this
spectrum is complex.

Only poles with positive/(non-positive) real parts con-
tribute to the power expansion at |r⃗| → 0/∞. The lead-
ing term at r → 0 is r2, which is calculable in general
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log10 r. This is a theoretical curve corresponding to the zoom
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DNS with required accuracy.

form from its definition after expanding the exponential
and averaging over directions of k⃗

〈
∆v⃗2〉 (r) → r2E∞(t)

24π3ν
= r2ν̃

20736πζ(3)νt2 (98)

The next term is r
5/2 as it follows from the table in (97).

As mentioned about the energy spectrum, there is no
K41 scaling index p = 2/3. This omission is not a contra-
diction, as K41 does not apply to decaying turbulence.
Instead of pure scaling laws with single decay indexes,
we found an infinite spectrum of scaling indexes, some of
which come as complex conjugate pairs, which leads to
quantum oscillations: see Fig.20 for the oscillation of the
index ξ2 at the latest stage. This region is inaccessible
with modern scale of the DNS.

The theoretical curve in Fig.19 agrees with the Fourier-
transformed data of43,49 but deviates from25. The prob-
able reason is the compressibility of the air in real exper-
iments in25.

The imaginary parts of these complex scaling
dimensions coincide with those of the famous Rie-
mann zeta zeros, establishing an intriguing rela-
tion between Turbulence and Number Theory.

X. DISCUSSION

This section will try to reconcile traditional perspec-
tives on turbulence phenomena, including enduring be-
liefs and myths, with our new theory.
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A. Myth and Reality of Turbulent Scaling Laws

More than eighty years ago, Kolmogorov and Obukhov
made a breakthrough in turbulence theory by establish-
ing the relation (7) for the three-point correlation func-
tion of the velocity field in turbulent flow. This formula
only selects the potential part of the triple velocity cor-
relation function by taking two coincident points. When
taking the curl, we get zero:

⟨vα(r⃗0)vβ(r⃗0)ων(r⃗ + r⃗0)⟩ =
eµγν∂µ(r⃗) ⟨vα(r⃗0)vβ(r⃗0)vν(r⃗ + r⃗0)⟩ ∝

eµγν

(
δαγδβν + δανδβγ − 2

d
δαβδµγ

)
= 0; (99)

The last relation follows from the symmetry of the ex-
pression in the brackets with respect to the exchange of
the indexes γ ⇔ µ.

This relation indicates no constraints on the rotational
part concerning triple vorticity correlations and sheds no
light on the scale invariance of turbulence theory.

Moreover, the linear term in coordinates does not have
any support in the Fourier spectrum. In Fourier space,
this term becomes linear combinations of gradients of
delta function ∇⃗δ3(k⃗), rather than some constant flow
through the whole spectrum. Such a constant flow would
require an |x| log |x| term rather than a linear term in co-
ordinates. This linear term is an example of the harmonic
terms added to the Biot-Savart integral for the velocity
field.

Thus, we are challenging not only K41 scaling laws but
also the concept of the ”Kolmogorov energy flux” vv∇v.
Indeed, our fast decay of the energy spectrum, accord-
ing to the old bounds established in58, corresponds to a
vanishing Kolmogorov energy flux in the turbulent limit.
The dissipative anomaly, neglected in that old work, ex-
plains the paradox. As we argued in subsection IV A, the
energy is pumped through the boundaries and dissipated
directly on viscous micro-structures (Burgers filaments).
Our exact computations of the dissipation and energy
spectrum in section IX A are compatible with the dissi-
pative anomaly but not with the energy cascade.

The K41 scaling law was introduced as a phenomeno-
logical model, not intended to replace the missing micro-
scopic theory. It was based on the assumption that the
local dissipation density does not fluctuate—a limitation
its creators were aware of, prompting them to propose a
log-normal distribution for this variable later on. How-
ever, even this modified model lacked a microscopic jus-
tification and failed to fully correspond with empirical
observations.

Subsequent experiments and DNS56,60,61 have inval-
idated the K41 scaling laws (including the log-normal
model) over the past thirty years. Regarding decay-
ing turbulence, the experimental data49 have diverged
even further from Kolmogorov scaling laws despite all at-
tempts to stretch this data or discard the non-fitting re-
gion as ”erosion.” We highlight significant deviations—six

orders of magnitude—from the k−5/3 scaling in Fig. 5.
There are also recent measurements25 with significant
deviations of the log-log derivative of the second velocity
moment

〈
∆v2〉 (r) from the 2

3 predicted by K41.
A broader assumption posited that power laws with

anomalous dimensions might exist in the inertial
range. The assumed analogy to critical phenomena led
to the proposal of multifractal scaling laws50, which, as a
phenomenological model, successfully described observed
deviations from the K41 laws in forced turbulence56,60.

However, there are no theoretical grounds for confor-
mal symmetry in turbulence; the ’current conservation’
conditions ∂αvα = 0, ∂γωγ = 0 in the CFT would pre-
scribe both velocity and vorticity dimensions of d−1 = 2,
contradicting the fact that vorticity is a curl of velocity.

Moreover, the anomalous dimension would not explain
decaying turbulence, as the log-log plots would remain
straight lines, though the slopes would become irrational
numbers. We must allow nonlinear correlation functions
on a log-log scale, as indicated by the data in Fig. 2 (top)
in25. Here, energy spectra for various parameters con-
verge into a universal curve on the decreasing part of the
spectrum, which is curved on the log-log scale, indicating
that a simple power law cannot describe it. Instead, it is
a nontrivial universal function of log k, spanning several
decades.

Both the DNS and experimental papers25,49 noted sig-
nificant deviations from scaling laws (whether K41 or
multifractal). The conclusion of49 was cautiously neg-
ative: ”it is somewhat disappointing that the results
are not more closely aligned with theoretical arguments.”
The most recent paper25 made a stronger negative claim:
”Our results point to a Reynolds number-independent
logarithmic correction to the classical power law for de-
caying turbulence that calls for theoretical understand-
ing.”

Our recent paper33 presented the theoretical argument
for the breaking of scaling laws due to logarithmic diver-
gences in a dilute gas of vortex filaments. In this approx-
imation, there were logarithmic terms in the effective en-
ergy for the filament, leading to violations of scaling laws
akin to asymptotic freedom in QCD. This approxima-
tion does not apply to decaying turbulence with a large
density of vortex structures, but at least it identifies a
dynamical mechanism for the deviations from the scal-
ing laws.

In the present paper, we used raw data from the
DNS43,49 to compute the effective index of the velocity
correlation by numerical Fourier transform of their en-
ergy spectrum (see Section VIII). Our effective index is
plotted in Fig. 15. The K41 scaling law ∆v2 ∼ r

2/3 is
very far from reality, as it is clear from these plots. Our
theory is much closer, and by fitting our arbitrary length
scale, we obtained a very good fit in the turbulent range
within experimental errors.

The microscopic theory developed here is not confor-
mally invariant but retains a critical aspect of CFT. The
Mellin transform of the vorticity field’s correlation func-
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tion in coordinate space is a meromorphic function of
the Mellin parameter p. This characteristic implies some
underlying scale invariance with an infinite discrete spec-
trum of complex anomalous dimensions (97).

In this way, our theory extends the multifractal
scaling laws by accommodating an infinite dis-
crete spectrum of scaling dimensions. According
to recent DNS results57, our predictions align with ob-
served slopes, unlike conventional scaling models such as
those proposed by Kolmogorov and Saffman.

This result suggests that experiments and DNS in de-
caying turbulence should be conducted at larger scales
and higher Reynolds numbers, fitting the data for loga-
rithms of the spectrum and energy dissipation decay as
nonlinear functions of the logarithm of the product of
wavevector and the square root of time, as we (success-
fully) did in Section VIII.

As part of this reevaluation, one should magnify and
study the decaying part of the spectrum way beyond its
middle part, roughly described by − 5

3 law with logarith-
mic corrections. This decaying part, the ”dissipative sub-
range,” was discarded as an unfitting puzzle piece in con-
ventional data fitting, but it fits well in our theory.

Heisenberg19 and Chandrasekhar8 proposed in the
middle of the last century for the ”dissipative subrange,”
the spectrum decay k−7, based on a model equation by
Heisenberg. At that time, there were no mathemati-
cal tools to solve the turbulence problem exactly, so the
model equations like that one passed as theories. The
fame of two Nobel laureates involved added weight to
this model assumption, so it stays alive to this day.

K.R. Sreenivasan dispelled this die-hard myth in his
paper55.

Chandra’s initial enthusiasm for Heisenberg’s
work was moderated when he learned from J.
von Neumann, in a colloquium that Chandra
gave at Princeton in the spring of 1949, that
the k−7 power law in the far-dissipation range
did not have experimental support.

Our theory also contradicts the k−7 law: no pole exists
between −13/2 and −8±ıtn in our Mellin transform spec-
trum (88). Instead, we have nontrivial dynamics at this
”dissipative subrange,” not just in the ”inertial range”
between energy pumping and dissipation. The full plot
of the effective index for the spectrum is shown in Fig.
7, asymptotically approaching − 7

2 . As long as enough
energy is left for a turbulent flow, our theory has a uni-
versal decaying spectrum spanning several decades and a
strongly curved second moment

〈
∆v2〉 (r) with effective

index (log derivative) shown in Fig. 14. We call the cor-
responding range of scales ”turbulent range”, combining
old inertial and dissipation ranges. Our theory perfectly
matches DNS/experiment in the whole turbulent range
without any dimensionless fitting parameters.

In conclusion, single-power scaling laws cannot de-
scribe the observed critical phenomena in decaying tur-
bulence. Instead, compare these phenomena with the

microscopic theory, which goes beyond empirical laws,
replacing them with universal nonlinear functions for the
energy spectrum, energy decay, and velocity correlation.

B. Stochastic solution of the Navier-Stokes equation and
ergodic hypothesis

Richard Feynman wrote about turbulence in his Lec-
tures in Physics13:

Nobody in physics has really been able to an-
alyze it mathematically satisfactorily in spite
of its importance to the sister sciences. It
is the analysis of circulating or turbulent flu-
ids.... What we really cannot do is deal with
actual, wet water running through a pipe.
That is the central problem which we ought
to solve some day, and we have not.

These words were written over sixty years ago, but the
problem remains unsolved.

We address this problem by seeking a stochastic so-
lution to the unforced Navier-Stokes equation, covering
a universal manifold over an infinite time. Our solution
reveals power-like singularities in correlation functions,
which emerge after averaging across this manifold in the
statistical limit as its dimension approaches infinity.

We already have a partial answer to the question posed
by Feynman about water flowing through a pipe: its local
kinetic energy density decays with time (and also with
distance from the grid at the entrance) as t−5/4. Feynman
did not distinguish between decaying turbulence and the
steady state. However, his example of the steady flow
of water through the pipe belongs to the grid turbulence
category covered by our theory.

The steady state of the water flow past the grid is
achieved by forcing at the position of the grid, but not
down the stream, which in our theory would be the ”ini-
tial condition” in the frame moving within the water. In
this frame, the energy pumping occurred initially when
the water passed the grid, after which the energy decayed
with time at every point of the water flow.

This is a steady state in the original frame because the
decaying pieces of the flow are constantly swept down-
stream. Thus, the energy does not depend on time at
a fixed distance from the grid. However, it decays with
this distance z =

∫
vzdt by the same z−5/4 law as the

time decay of the energy of the decaying turbulence.
A more detailed answer for the pressure as a function

of the total amount of water pushed through the pipe
would require some future investigation of our solution.

These singularities originate from the infinite time re-
quired to cover this manifold uniformly.

We identify this manifold (the Euler ensemble) by solv-
ing the loop equation—a subset of the Hopf functional
equation for the generating functional of velocity field
probabilities. Notably, none of the solutions within this
manifold experiences finite-time blow-ups. Instead, we
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encounter singularities from the fixed trajectory of the
loop equation, not from its finite-time solutions.

We adopt the most natural invariant measure from the
perspective of number theory: each element of the Euler
ensemble is weighted equally, an assumption we term the
quantum ergodic hypothesis.

With this invariant measure, the Euler ensemble
stands out because the loop functional is equal to the
trace of the evolution operator in a quantum system—the
Fermi particles on a ring interacting with a quantum field
made of fractions of π. Every distinct state, including
every distinct fraction, contributes equally to the quan-
tum trace in this discrete system. For our purposes, this
means treating every element in the Euler ensemble with
equal weight.

Our quantum ergodic hypothesis thus stipulates an
exact equivalence between the loop functional and the
quantum trace of an evolution operator for the one-
dimensional ring of Fermi particles. This quantum anal-
ogy has paved the way for an analytical solution in the
turbulent limit. This limit corresponds to the quasiclas-
sical limit of this Fermi system, where viscosity acts like
Planck’s constant.

The quantum ergodic hypothesis results from a more
general relation between fluid dynamics and quantum
mechanics. The loop equation, in the general case,
with finite viscosity and external stochastic forces in the
Navier-Stokes equation, represents the Schrödinger equa-
tion in loop space30,31.

The time evolution of the wave function, which is the
loop functional, is given by the sum over ”classical” histo-
ries, corresponding to this loop space Hamiltonian. Dirac
and Feynman established that the weight of each history
exp (ıS/ℏ) for any quantum system with the Action S.

Comparing the Dirac-Feynman rule with the definition
of the loop functional, we conclude that the velocity cir-
culation ΓC [v] =

∮
C

v⃗ · dr⃗ plays the role of the Action in
the loop quantum mechanics, and viscosity plays the role
of Planck’s constant. The sum goes over the classical so-
lutions of the Navier-Stokes equation with various initial
data, with equal weight for each solution.

We cannot describe all these solutions for the veloc-
ity field, but surprisingly, we can compute the weighted
sum of all these solutions, i.e., the loop functional. Let
us stress that this is not an asymptotic solution of the
loop equation, with some terms neglected at large times.
Our solution (12), (20), (24) exactly satisfies the Navier-
Stokes equation at a finite time for the loop functional in
the turbulent limit N → ∞, ν → 0.

The wave functional is not localized in the weak tur-
bulence phase (small circulations compared to viscosity),
so states are not quantized. This quantization occurs
only in the strong turbulent phase (large circulations);
the Euler ensemble or the Fermi ring describes it.

In the same way, as one-dimensional quantum mechan-
ical motion in external potential becomes finite and quan-
tized when potential well becomes deep enough, our loop
functional at large time transforms from continuous dis-

tribution in loop space to the quantized finite motion
characterized by the momentum loop P⃗ (θ). The contin-
uous quantum mechanical integral over phase space with
equal weight 1/(2π) per DOF becomes the discrete sum
over all distinct quantum levels with unit weight.

We hope our quantum ergodic hypothesis can be
proven from the Navier-Stokes equation, starting with
the quantum representation of the loop equation as a
Schrödinger equation in loop space. If confirmed, this
hidden quantum mechanics of classical turbulence may
become a law of Nature rather than a computational
method.

Like the classical ergodic hypothesis, this may take an-
other hundred years. Theoretical physics does not wait
for rigorous proof but rather explores the consequences of
the conjectured theory and compares them with physical
and numerical experiments.

C. The physical meaning of the loop equation and
dimensional reduction

The long-term evolution of Newton’s dynamical system
with many particles eventually covers the energy surface
(microcanonical ensemble). The ergodic hypothesis, ac-
cepted in Physics but still not proven mathematically,
states that this energy surface is covered uniformly. Tur-
bulence theory aims to find a replacement for the micro-
canonical ensemble for the Navier-Stokes equation. This
surface would also participate in the decay in the pure
Navier-Stokes equation without artificial forcing.

In both cases, Newton and Navier-Stokes, the proba-
bility distribution must satisfy the Hopf equation, which
follows from the dynamics without specifying the mecha-
nism of the stochastization. Indeed, the Gibbs and micro-
canonical distributions in Newton’s dynamics satisfy the
Hopf equation in a rather trivial way: it reduces to the
conservation of the probability measure (Liouville theo-
rem), which suggests the energy surface as the only addi-
tive integral of motion to use in the exponent of the fixed
point distribution.

The loop technology has been thoroughly discussed
in the last few decades in gauge theories, including
QCD2,22,23,28,42, where the loop equations were first
derived26,27.

In the case of decaying turbulence, the loop equations
represent a closed subset of the Hopf equations, which is
still sufficient to generate the statistics of vorticity. In
this case, the exact solution we have found for the loop
functional also follows from the integrals of motion, this
time, the conservation laws in the loop space.

The loop space Hamiltonian we derived from the un-
forced Navier-Stokes equation does not have any poten-
tial terms (those with explicit dependence upon the shape
of the loop). The Schrödinger equation with only ki-
netic energy in the Hamiltonian conserves the momen-
tum. The corresponding wave function is a superposition
of plane waves exp (ıp⃗ · x⃗). This superposition is the solu-



22

tion we have found, except the dot product p⃗ · x⃗ becomes
a symplectic form

∮
P⃗ (θ) · dC⃗(θ) in the loop space.

Our momentum P⃗ (θ, t) is not an integral of motion,
but simple scaling properties of the pure Navier-Stokes
equation lead to the solution with P⃗ (θ, t) ∝ F⃗ (θ)/

√
t,

with F⃗ (θ) being the integral of motion at large time (i.e.,
a fixed point). The rest is a purely technical task: substi-
tuting this scaling solution into the Navier-Stokes equa-
tion and solving the resulting universal equation for a
fixed point F⃗ (θ).

This equation led us to the Fermi ring in the quasiclas-
sical limit. The solution of the Fermi ring in this limit
resulted in the energy spectrum and dissipation in a finite
system found in Section VII.

D. Classical Flow and Quantum Mechanics

Our computations rely significantly on number theory,
particularly Jordan’s multitotients, φl(q), which extend
the Euler totient function44. What could number theory
share with turbulent flow? The quantization of param-
eters in the fixed manifold of decaying turbulence origi-
nates from the quantum correspondence identified in the
nineties30. The statistical distribution of a nonlinear clas-
sical Navier-Stokes (NS) PDE is related to the wave func-
tional of a linear Schrödinger equation in loop space, as
detailed in the previous section.

Is quantum mechanics at work in a water faucet with
a grid filter? Yes and no.

This relationship is indirect: the loop functional, a
Fourier transform of the classical probability distribution
for circulation, equals the complex quantum amplitude of
the loop space theory represented by a Fermi ring. Prob-
ability is real and positive, while its Fourier transform is
complex, reflecting the irreversibility of the Navier-Stokes
dynamics.

A probability distribution for circulation satisfies an-
other loop equation30,31, with all coefficients being real.
The time evolution of this probability spans alternative
histories, as it typically does in statistical mechanics, but
the weights of each history remain real and positive.

On the other hand, the complex loop functional ad-
heres to the quantum mechanical evolution equation,
resulting in quantum interference of alternative his-
tories. The quantum interference is quite significant
here, with the dominant complex trajectory—the instan-
ton—describing notable quantum effects such as expo-
nential cancellation of contributions from alternative his-
tories and penetration into classically forbidden regions
within loop space.

The quantization mechanism of the parameters in the
plane wave solution mirrors that of conventional quan-
tum mechanics: the solution’s periodicity P⃗ (ξ + 1) =
P⃗ (ξ).

From the conventional perspective, the fractal curve
in complex momentum space, P⃗ (θ) ∈ C3, or Fermi par-

ticles on a circle, may seem unrelated to turbulent flow.
One could ask how turbulence can be addressed without
directly studying the velocity field.

The well-established duality phenomenon, known as
ADS/CFT duality, equates the strong coupling phase of
a conformal field theory to the weak coupling phase of
quantum geometry in another dimension. This relation-
ship is more than just a method for calculating corre-
lation functions of a strongly fluctuating vector field; it
reveals a second identity of the original theory.

The quantum Fermi ring’s particle density fluctuations
disappear in the turbulent limit. In contrast, the origi-
nal theory’s fluctuations are so intense that the vorticity
field ceases to exist. This Fermi ring arguably reveals the
true identity of decaying turbulence, as a classical func-
tion describes a smooth Fermion density—the instanton
solution we identified.

Coming back to decaying turbulence in a water faucet,
the probability distribution of velocity circulation in the
water stream you wash your hands with is classical, of
course; however, this classical distribution decays by
a complex law based on quantum interference for its
Fourier transform. This Fourier transform (loop func-
tional) adds up from alternative histories with quantum
mechanical complex weights.

Mathematical physics sometimes has dual representa-
tions for the same phenomena, such as the duality be-
tween particles and waves in quantum mechanics, or be-
tween matrix models6,11,17 and Liouville theory24,52 in
2D quantum gravity.

Additional complexities arise in gauge theory due to
short-distance singularities involving the infinite fluctu-
ating degrees of freedom in quantum field theory. Wilson
loop functionals in coordinate space are singular in gauge
field theory and cannot be multiplicatively renormalized.

There are no short-distance divergences in the Navier-
Stokes equations and NS loop dynamics. The Euler equa-
tions represent a singular limit that, as argued, should be
resolved through singular topological solitons regularized
by the Burgers vortex.

In the dual theory of this paper, the singularities exist
in the dual space C3. Anomalous dissipation is achieved
through numerous finite discontinuities of the fractal
curve P⃗ (ξ) ∈ C3.

However, these singularities only occur in the inviscid
limit, ν ∝ 1/N2 → 0, representing Euler singularities like
line vortices that are regularized by finite viscosity, just
like our singularities.

E. Renormalizability of the Inviscid Limit of the Loop
Equation

Let us examine the relationship νN2 = const between
diminishing viscosity and the increasing number N of
discontinuities on the momentum loop P⃗ (θ).

The Navier-Stokes (Navier-Stokes) equation is essen-
tially an idealization of molecular dynamics, approximat-



23

ing nonlocal theory by a truncated expansion in powers
of gradients.

In the case of laminar flow, this truncated expansion
poses no issues. However, in our solution for the loop
equation, the velocity field becomes singular in the local
limit.

Mathematically, velocity and vorticity are not ordi-
nary functions in R3 but stochastic variables, with ∆v⃗ ∼
(∆r⃗)α.

Fractal Calculus14 was introduced to generally describe
such fields. Yet, this alone does not account for turbu-
lence, particularly since the more general power laws with
multifractal dimensions ⟨(∆v⃗)n⟩ ∼ (∆r⃗)ζn cannot be ex-
plained in this manner.

In our theory, there is a universal function (95) for the
velocity correlation function as a function of the separa-
tion r⃗. However, the r⃗ dependence is not defined by a
single power: the Mellin transform of this function re-
veals infinitely many poles (97) in the complex plane.
The absence of branch cuts supports the idea of scale
invariance, but the analogy with CFT ends here.

Our solution characterizes a fractal vorticity field, yet
this field does not conform to known fractal types. The
fractal curve P⃗ (θ) is not merely a random walk on a
circle: dynamic restrictions, such as periodicity, lead to
nontrivial critical behavior not describable by any finite
set of fractal power laws.

We define the turbulent limit of the velocity field dis-
tribution by discretizing the loop equation (replacing the
continuum loop with a polygon with an increasing num-
ber of vertices).

The relation between vanishing viscosity and an in-
creasing number of degrees of freedom parallels the renor-
malization group (RG) relation between the bare cou-
pling constant g0 and the lattice spacing a in QCD:
a ∝ gα

0 exp
(
−β/g2

0
)
.

The naive local limit a → 0, g0 = const does not exist
in QCD, but the RG limit effectively describes the strong
interaction of hadrons.

Similarly, in our approach, renormalizability is present.
The dissipation rate remains finite as ν̃ = νN2 → const .
Furthermore, the energy spectrum, expressed as a func-
tion of k

√
ν̃t, remains finite in the local limit.

Thus, akin to renormalizable quantum field theory
(QFT), a ”dimensional transmutation” occurs where in-
finities are absorbed into the dimensional parameter ν̃,
defining the time scale.

The energy scale is related to the fluid’s physical viscos-
ity ν in the denominator. Formally setting ν = 0 would
tend the physical energy scale to infinity. The fictitious
limit ν → 0 was only taken to compute the turbulent
limit of the energy spectrum as a function of Reynolds
number Γ/ν.

In the real world, this number is large because of the
large circulation Γ compared to finite viscosity ν. Still,
we can compute these dimensionless functions by taking
the inviscid limit, as described by equation (69) in Sec-
tion VII B.

In particular, the energy spectrum is proportional to
1/ν times the function of the effective Reynolds number,
time, and wave vector. We tend the Reynolds number to
infinity in the turbulent limit but keep a finite physical
viscosity factor in the energy spectrum.

F. Relation of Our Solution to Weak Turbulence

The solution of the loop equation with finite area
derivative, satisfying the Bianchi constraint, belongs to
the category of Stokes-type functionals26, similar to the
Wilson loop for gauge theory and fluid dynamics.

The Navier-Stokes (NS) Wilson loop represents a case
of the Abelian loop functional, characterized by com-
muting components of the vector field v⃗. As extensively
discussed in26,27,31, any Stokes-type functional Ψ(γ, C)
that satisfies the boundary condition at a shrunk loop
Ψ[γ, 0] = 1 and solves the loop equation can be iterated
in the nonlinear term in the NS equations. This iteration
is applicable in conditions of high viscosity.

The resulting expansion in inverse powers of viscosity
(representing weak turbulence) coincides with the stan-
dard perturbation expansion of the NS equations for the
velocity field, averaged over the initial data distribution.

We have shown in30,31 (and also here, in Section IV B)
how the velocity distribution for random uniform vortic-
ity in the fluid was reproduced by a singular momentum
loop P⃗ (θ).

The solution for P⃗ (θ) at this specific fixed point of the
loop equation was complex and had slowly decreasing
Fourier coefficients, leading to a discontinuity sign(θ−θ′)
in a pair correlation function (A14). The correspond-
ing Wilson loop is equated to the Stokes-type functional
(A6).

Using this example, we demonstrated how a discon-
tinuous random momentum loop describes the vorticity
distribution in the stochastic NS flow. Here, the vorticity
acts as a global random variable corresponding to a ran-
dom uniform fluid rotation—a well-known exact solution
of the NS equation.

This example corresponds to a special fixed point for
the loop equation. Although not general enough to de-
scribe turbulent flow, it is an ideal mathematical model
for loop technology. It illustrates how the momentum
loop solution aggregates all terms of the 1/ν expansion
in the NS equation.

In our general solution, with the Euler ensemble, the
summation of a divergent perturbation expansion occurs
at an extreme level, leading to a universal fixed point in
the limit of vanishing viscosity.

Given initial conditions, after a finite time, the solution
will still depend on viscosity and the initial conditions.
We expect no singularities for a smooth initial velocity
field.
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XI. REMAINING PROBLEMS

• The loop functional for the circular loop is the sim-
plest object in this theory. It can be computed
using the methods developed in this paper, yield-
ing even simpler results. In this case, the classical
equation is trivial, so the computations reduce to
the functional determinant and the resolvent. On
the other hand, this is an observable quantity and
could be measured in DNS. It would be an interest-
ing problem to solve and compare with the DNS.

• The higher moments of circulation or veloc-
ity differences are calculable from this general
WKB approximation for the path integral at
ν → 0, N → ∞. The nth moment of
∆v⃗ =

∫
d3k ık⃗×ω⃗k

k⃗2

(
exp

(
ı⃗k · r⃗

)
− exp

(
ı⃗k · r⃗′

))
re-

duces to the loop functional for the same backtrack-
ing ”hairpin” traversed n times, with vorticity in-
serted n times at the ends. This computation will
produce analytical results for the multifractal scal-
ing laws for velocity moments.

• The spectrum of indexes for deviations from our
fixed trajectory32 can be evaluated to compute
vorticity correlation functions in the Navier-Stokes
equation with an infinitesimal random force.

XII. CONCLUSION

We have established an exact duality between decay-
ing classical turbulence in 3+1 dimensions and a solvable
one-dimensional quantum theory of Fermi particles on
a ring. In this framework, Fermi particles are confined
within the vorticity field, where strong vorticity fluctu-
ations correspond to weak fluctuations in the Fermion
density. Elaborating on this theory, we present an ana-
lytical solution for decaying turbulence in quadrature.

Our theory replaces the old scaling laws (including
multifractal versions) with universal functions, nonlin-
ear in a log-log scale. This microscopic theory challenges
the prevailing paradigms of the past eighty years, but
it perfectly fits the available experimental data9,10 and
recent DNS data43,49,54. It offers an intriguing perspec-
tive, revealing unexpected connections between nonlinear
classical physics and quantum mechanics.
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DATA AVAILABILITY

The Mathematica®notebooks used to verify equations
and compute some functions are available for download
in34–37,39–41. The raw DNS data from49 can be down-
loaded from the shared Google Drive43.
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Appendix A: Global Random rotation and Momentum Loop
Space

This path integral was computed in31,32 for a special
stochastic solution of the Navier-Stokes equation: the
global rotation with Gaussian random rotation matrix.
The initial velocity distribution is Gaussian, with a slowly
varying correlation function. The corresponding loop
field reads (we set γ = 1 for simplicity in this section)

Ψ0[C] ≡ Ψ(1, C)t=0 =

exp
(

− 1
2ν2

∫
C

dC⃗(θ) · dC⃗(θ′)f
(

C⃗(θ) − C⃗(θ′)
))

(A1)

where f(r⃗) is the velocity correlation function

⟨vα(r)vβ(r′)⟩ =
(
δαβ − ∂α∂β∂−2

µ

)
f(r − r′) (A2)

The potential part drops out in the closed loop integral.
The correlation function varies at the macroscopic scale,
which means that one could expand it in the Taylor series

f(r − r′) → f0 − f1(r − r′)2 + . . . (A3)

The first term f0 is proportional to initial energy den-
sity,

1
2
〈
v2

α

〉
= d − 1

2 f0 (A4)

and the second one is proportional to initial energy dis-
sipation rate E0

f1 = E0

2d(d − 1)ν (A5)

where d = 3 is the dimension of space. The constant
term in (A3) as well as r2 + r′2 terms drop from the
closed loop integral, so we are left with the cross-term
rr′, which reduces to a full square

Ψ0[C] → exp
(

− f1

ν2

(∮
dCα(θ)Cβ(θ)

)2
)

(A6)

This distribution is almost Gaussian: it reduces to
Gaussian one by extra integration

Ψ0[C] → const
∫

(dϕ) exp
(
−ϕ2

αβ

)
exp

(
2ı

√
f1

ν
ϕµν

∮
dCµ(θ)Cν(θ)

)
(A7)

The integration here involves all d(d−1)
2 = 3 indepen-

dent α < β components of the antisymmetric tensor ϕαβ .
Note that this is ordinary integration, not the functional
one.

This distribution can be translated into the momentum
loop space. Here is the resulting stochastic function P⃗ (θ),
defined by the Fourier expansion on the circle

Pα(θ) =
∞∑

odd n=1
Pα,neınθ + P̄α,ne−ınθ; (A8)

Pα,n = N (0, 1); (A9)

P̄α,n = 4
√

f1

nν
ϕαβPβ,n; (A10)

ϕαβ = −ϕβα; (A11)
ϕαβ = N (0, 1)∀α < β; (A12)

At fixed tensor ϕ the correlations are

⟨Pα,nPβ,m⟩t=0 = 4
√

f1

mν
δnmϕαβ ; (A13)

⟨Pα(θ)Pβ(θ′)⟩t=0 = 2ı

√
f1

ν
ϕαβ sign(θ′ − θ); (A14)

Ψ0[C] =
〈

exp
(

ı

ν

∮
dC⃗(θ)P⃗ (θ)

)〉
P,ϕ

(A15)

https://en.wikipedia.org/wiki/Burgers_vortex
https://en.wikipedia.org/wiki/Burgers_vortex
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Though this special solution does not describe isotropic
turbulence, it helps understand the mathematical prop-
erties of the loop technology. In particular, it shows the
significance of the discontinuities of the momentum loop
P⃗ (θ).

Appendix B: The Markov chain and its Fermionic
representation

Here is a new representation of the Euler ensemble,
leading us to the exact analytic solution below.

We start by replacing independent random variables σ
with fixed sum by a Markov process, as suggested in32.
We start with n random values of σi = 1 and remaining
N − n values of σi = −1. Instead of averaging over
all of these values simultaneously, we follow a Markov
process of picking σN , . . . σ1 one after another. At each
step, there will be M = N, . . . 0 remaining σ. We get a
transition n ⇒ n−1 with probability n

M and n ⇒ n with
complementary probability.

Multiplying these probabilities and summing all histo-
ries of the Markov process is equivalent to the computa-
tion of the product of the Markov matrices

N∏
M=1

Q(M); (B1)

Q(M)|n⟩ = M − n

M
|n⟩ + n

M
|n − 1⟩; (B2)

This Markov process will be random until n = 0. After
that, all remaining σk will have negative signs and be
taken with probability 1, keeping n = 0.

The expectation value of some function X̂({σ}) re-
duces to the matrix product

P[X̂] =
N+∑
n=0

⟨n|

(
N∏

M=1
Q̂(M)

)
· X̂ · |N+⟩ ; (B3)

Q̂(M) · X̂|n⟩ = n

M
X̂ (σM → 1) |n − 1⟩ +

M − n

M
X̂ (σM → −1) |n⟩ (B4)

Here N+ = (N +
∑

σl)/2 = (N + qr)/2 is the number
of positive sigmas. The operator Q̂(M) sets in X̂|n⟩ the
variable σM to 1 with probability n

M and to −1 with
complementary probability. The generalization of the
Markov matrix Q(M) to the operator Q̂(M) will be pre-
sented shortly.

Once the whole product is applied to X̂, all the sigma
variables in all terms will be specified so that the result
will be a number.

This Markov process is implemented as a computer
code in7, leading to a fast simulation with O(N0) memory
requirement.

Now, we observe that quantum Fermi statistics can
represent the Markov chain of Ising variables. Let
us construct the operator Q̂(M) with Fermionic cre-
ation and annihilation operators, with occupation num-
bers νk = (1 + σk)/2 = (0, 1). These operators obey
(anti)commutation relations, and they create/annihilate
σ = 1 state as follows (with Kronecker delta δ[n] ≡ δn,0):

[
ai, a†

j

]
+

= δij ; (B5)

[ai, aj ]+ =
[
a†

i , a†
j

]
+

= 0; (B6)

a†
n|σ1, . . . , σN ⟩ =

δ[σn + 1]|σ1, . . . , σn → 1, . . . σN ⟩; (B7)
an|σ1, . . . , σN ⟩ =
δ[σn − 1]|σ1, . . . , σn → −1, . . . σN ⟩; (B8)
ν̂n = a†

nan; (B9)
ν̂n|σ1, . . . , σN ⟩ = δ[σn − 1]|σ1, . . . , σN ⟩ (B10)

The number n(M) of positive sigmas
∑M

l=1 δ[σl −1] co-
incides with the occupation number of these Fermi par-
ticles.

n̂(M) =
M∑

l=1
ν̂l; (B11)

This relation leads to the representation

Q̂(M) = ν̂M
n̂(M)

M
+ (1 − ν̂M )M − n̂(M)

M
; (B12)

The variables σl can also be expressed in terms of this
operator algebra by using

σ̂l = 2ν̂l − 1. (B13)

The Wilson loop in (11) can now be represented as an
average over the small Euler ensemble E(N) of a quantum
trace expression
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Ψ(γ, C) =

〈
Ŵ [C]

〉
Ω̂,E(N)〈

Ŵ [0]
〉

Ω̂,E(N)

; (B14)

Ŵ [C] = tr
(

Ẑ(qr) exp
(

iγΓ̂
ν

)
N∏

M=1
Q̂(M)

)
, (B15)

Γ̂ =
∑

l

∆C⃗l · Ω̂ · P⃗l(t); (B16)

Ẑ(s) =
∮

dω

2π
exp

(
ıω

(∑
l

σ̂l − s

))
; (B17)

∆C⃗l = C⃗

(
l + 1

N

)
− C⃗

(
l

N

)
, (B18)

P⃗l(t) =
√

ν

2 (t + t0)
F⃗l

γ
, Ω̂ ∈ O(3), (B19)

F⃗l = {cos (α̂l) , sin (α̂l) , 0}

2 sin
(

β
2

) , (B20)

E(N) : p, q, r ∈ Z − N ≤ qr ≤ N,

with 0 < p < q < N, gcd(p, q) = 1, (B21)

α̂l = β

l−1∑
k=1

(2ν̂k − 1); (B22)

The last component of the vector F⃗l is set to 0 as this
component does not depend on l and yields zero in the
sum over the loop

∑
l ∆C⃗l = 0.

The proof of equivalence to the combinatorial formula
with an average over σl = ±1 can be given using the
following Lemma (obvious for a physicist).

Lemma 1. The operators ν̂l all commute with each
other.

Proof. Using commutation relations, we can write

ν̂lν̂n = a†
l (δln − a†

nal)an =
a†

l anδln − a†
l a†

nalan (B23)

Interchanging indexes l, n in this relation, we see that
the first term does not change due to Kronecker delta,
and the second term does not change because a†

l , a†
n anti-

commute, as well as al, an, so the second term is symmet-
ric as well. Therefore, ν̂lν̂n = ν̂nν̂l

Quantum Trace Theorem. The trace formula (B14)
equals the expectation value of the momentum loop ansatz
(12), (20), (24) in the big Euler ensemble.

Proof. As all the operators ν̂l commute with each other,
the operators Q̂(M) can be applied in arbitrary or-
der to the states Σ = |σ1, . . . σN ⟩ involved in the
trace. The same is true about individual terms in
the circulation in the exponential of the Wilson loop.

These terms F⃗l involve the operators α̂l, which com-
mute with each other and with each Q̂(M). Thus, we
can use the ordered product of the operators Ĝl =
Q̂(l) exp

(
ıωσ̂l + iγ

ν ∆C⃗l · P⃗l(t)
)

. Each of the operators
Ĝl acting in turn on arbitrary state Σ will create two
terms with δ[σl ± 1]. The exponential in Ĝl will involve
σ̂k, k ≤ l. As a result of the application of the operator
Ẑl =

∏l
k=1 Ĝk to the state vector Σ we get 2l terms with

Σ
∏l

k=1 δ[σk − ηk], ηk = ±1. The factors Ẑl will involve
only σ̂k, k ≤ l, which are all reduced to ηk, k ≤ l in virtue
of the product of the Kronecker deltas. Multiplying all
operators ĜM will lead to superposition Π̂N of 2N terms,
each with product

∏N
M=1 δ[σM −ηM ] with various choices

of the signs ηi = ±1 for each i. Furthermore, the prod-
uct of Kronecker deltas will project the total sum of 2N

combinations of the states Σ in the trace tr . . . to a sin-
gle term corresponding to a particular history η1, . . . ηN

of the Markov process. The product of Kronecker deltas
in each history will be multiplied by the same state vec-
tor Σ, by the product of Markov transition probabilities,
and by the exponential exp

(
iγ
ν

∑
l ∆C⃗l · Ω̂ · P⃗l(t)

)
with

the operators σ̂ in P⃗k(t) replaced by numbers η leading to
the usual numeric P⃗l(t). The transition probabilities of
the Markov process are designed to reproduce combina-
torial probabilities of random sigmas, adding up to one
after summation over histories46. The integration over
ω will produce δ [

∑
l η̂l − s]. This delta function will re-

duce the trace to the required sum over all histories of
the Markov process with a fixed

∑
l ηl.

We have found a third vertex of the triangle of
equivalent theories: the decaying turbulence in three-
dimensional space, the fractal curve in complex space,
and Fermi particles on a ring. By degrees of freedom,
this is a one-dimensional Fermi-gas in the statistical limit
N → ∞. However, there is no local Hamiltonian in this
quantum partition function, just a trace of certain prod-
ucts of operators in Fock space. So, an algebraic (or
quantum statistical) problem remains to find the contin-
uum limit of this theory of the Fermion ring.

Appendix C: Path integral over Markov histories

Let us represent the product ΠN of the transitional
probabilities of the particular history of the Markov pro-
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cesses as follows (with n± ≡ n±(l), ∆n± = −1)

ΠN = exp (NΛN ) ; (C1)

ΛN = 1
N

∑
l

Gl; (C2)

Gl = ∆n+ log
(

n+

n+ + n−

)
+

∆n− log
(

n−

n+ + n−

)
; (C3)

n+ =
∑
k≤l

νk; (C4)

n− =
∑
k≤l

(1 − νk); (C5)

These n± are net numbers of η = ±1 in terms of Ising
spins or occupation numbers νk = (1, 0) in the Fermi rep-
resentation. There is an extra constraint on the Markov
process

n+ + n− = l; ∀l (C6)

which follows from the above definition in terms of the
occupation numbers. We can redefine n± as N times the
piecewise constant functions.

n± = Nf±(ξ); (C7)

f±(ξ) =
⌊Nξ⌋∑
k=1

νk

N
; (C8)

f ′
±(ξ) =

N∑
l=1

δ

(
ξ − l

N

) l∑
k=1

νk

N
; (C9)

0 < ξ < 1; (C10)

The sums can be rewritten as Lebesgue integrals

ΛN =
∫ 0

1(
df+(ξ) log

(
f+(ξ)

ξ

)
+ df−(ξ) log

(
f−(ξ)

ξ

))
(C11)

The sum over histories of the Markov process will be-
come a path integral over the difference ϕ = f+(ξ) −
f−(ξ)

∑
η.=±1

exp
(

N(ΛN + ıΛ(1)
N )
)

→
∫

Dϕ exp
(

N(ΛN + ıΛ(1)
N )
)

(C12)

This path integral will be dominated by the ”classical
history,” maximizing the product of transitional prob-
abilities if such a classical trajectory exists. The first
term (without the circulation term) brings the variational
problem
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Figure 21. The plot of the function Λ(s). As required, it is
positive, takes a maximal value log(2) at s = 0, and vanishes
at both ends s = ±1 of the physical region.

max
ϕ

ΛN [ϕ]; (C13)

ΛN [ϕ] =
∫ 0

1
dξ(

df+

dξ
log
(

f+

ξ

)
+ df−

dξ
log
(

f−

ξ

))
; (C14)

f±(ξ) = 1
2 (ξ ± ϕ(ξ)) ; (C15)

f±(ξ) ≥ 0; (C16)

This problem is, however, a degenerate one, as the
functional reduces to the integral of the total derivative:

δΛN [ϕ]
δϕ(ξ) = 0; (C17)

ΛN [ϕ] =
∫ 0

1
d (f+ log f+ + f− log f−) + 1 +

∫ 1

0
dξ log ξ =

−1
2(1 − s) log(1 − s) − 1

2(1 + s) log(1 + s) + log(2); (C18)

It depends on the boundary condition ϕ(0) = 0, ϕ(1) =
s but not on the shape of ϕ(ξ).

This expression matches the Stirling formula for the
logarithm of the binomial coefficient in the combinatorial
solution32 for the Euler ensemble

lim
N→∞

log
(

N

N(1 + s)/2

)
N

= log(2) +

−1
2(1 − s) log(1 − s) − 1

2(1 + s) log(1 + s) (C19)

This Λ(s) = Λ∞(s) is a smooth even function of s
taking positive values from Λ(±1) = 0 to the maximal
value Λ(0) = log(2) (see Fig.21).

Now, let us add the circulation term to the exponen-
tial of the partition function (B14). This term can be
directly expressed in terms of the difference between our
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two densities Nϕ(ξ) = Nf+(ξ) − Nf−(ξ):

ıNΛ(1)
N [ϕ, CΩ] = ı√

2νt

∫ 1

0
dC⃗Ω(ξ) · F⃗ (ξ); (C20)

F⃗ (ξ) = {sin(βNϕ(ξ)), cos(βNϕ(ξ)), 0}
2 sin(β/2) ; (C21)

C⃗Ω(θ) = Ω̂ · C⃗(θ); (C22)
We remember that the last component of the vector F⃗ (ξ)
does not contribute to the circulation integral in (C20)
with the closed loop C⃗Ω(ξ). This is why we replaced it
with zero, not because it is small but because it drops.
The key assumption is, of course, the existence of the
smooth limit of the charge density ϕ(ξ) of these Fermions
when they are densely covering this loop.

We are working with α(ξ) = βNϕ(ξ) in the following.
The measure for paths [Dα] is undetermined. The

derivatives of these alphas were quantized in the original
Fermi theory: each step α′(ξ) ≈ N∆α = Nβσ = ±Nβ.

As we demonstrate below, in continuum theory, this
discrete distribution can be replaced by a Gaussian dis-
tribution with the same mean square∑

α′=±Nβ

↔
∫

dα′ exp
(

− (α′)2

2N2β2

)
(C23)

To demonstrate that, we consider in the critical region
β2 ∼ N−1 → 0 the most general term that arises in the
moments of the circulation in (C20) (see5 for some exact
computations of these moments)

2−N
∑

σi=±1
exp

(
ıβ
∑

i

kiσi

)

=
∏

i

cos βki → exp
(

−β2/2
∑

i

k2
i

)
(C24)

where ki are some integers. With a large number N
of these integers, the sum in the exponential becomes an
integral, which is equivalent to a Gaussian integral

exp
(

−β2/2
∑

i

k2
i

)
=

∏
i

∫ ∞

−∞

dσi√
2π

exp
(
−σ2

i /2
)

exp (ıβkiσi)

→ exp
(

−Nβ2/2
∫ 1

0
dξk(ξ)2

)
(C25)

We arrive at the standard path integral measure∫
[Dα] =

∫
Dα(ξ) exp

(
−
∫ 1

0
dξ

(α′)2

2Nβ2

)
; (C26)∫

[Dα] exp
(

ıN
∫ 1

0 dξα(ξ)K(ξ)
)

∫
[Dα] =

exp
(

−
N2 ∫∫ dξ1dξ2K(ξ1)K(ξ2)G1,2

2

)
; (C27)

G1,2 = ⟨α(ξ1)α(ξ2)⟩ ; (C28)

The next Appendix will compute this Green’s function
G1,2 = G(ξ1, ξ2).

Thus, we arrive at the following path integral in the
continuum limit

Ψ[C] =

∑
p<q;(p,q)

∫
Ω∈O(3)

dΩ
∫

[Dα]

∑
p<q;(p,q)

|O(3)|
∫

[Dα]

exp
(

ı

∫ 1
0 dξIm (C′

Ω(ξ) exp (ıα(ξ)))
2 sin(πp/q)

√
2ν(t + t0)

)
; (C29a)

CΩ(θ) = C⃗(θ) · Ω̂ · {ı, 1, 0}; (C29b)

We get the U(1) statistical model with the boundary
condition α(1) = α(0) + βNs. The period βNs = 2πpr
is a multiple of 2π, which is irrelevant at N → ∞. The
effective potential for this theory is a linear function of
the loop slope C⃗ ′(ξ).

This model is yet another representation of the Euler
ensemble, suitable for the continuum limit.

Appendix D: Matching path integral with combinatorial
sums

The results of the path integration over α must match
the combinatorial calculations with σl = ±1 in the limit
of large N . Without the interaction provided by the cir-
culation term in (C29a), this path integral is dominated
by a linear trajectory

αcl(ξ) = βNξs; (D1)

We already saw the match between the classical Action
ΛN [ϕ(ξ) = ξs] and the asymptotic value of the logarithm
of the Binomial coefficient of the combinatorial solution
for the sum over σ variables.

Let us verify some examples of the expectation values
over σ. The simplest is (with n ̸= m)

⟨σnσm⟩∑σ=Ns (D2)

The direct calculation using methods of5,32 leads to

⟨σnσm⟩∑σ=Ns = −
∮

dω

2πZ
eıωNs cos((N − 2)ω) sin2(ω) =

(1 − Ns2)
2N−3ZN(1 − s2)

(
N − 2

1
2 (N + Ns − 2)

)
; (D3)

Z =
∮

dω

2π
eıωNs cos(Nω) = 2−N

(
N

1
2 (sN + N)

)
(D4)

Using Gamma function properties, this ratio simplifies to

Ns2 − 1
N − 1 (D5)
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This result can be derived from symmetry without any
integration.

⟨σnσm⟩∑σ=Ns =

A(N, s)(1 − δnm) + δnm; (D6)∑
n,m

⟨σnσm⟩∑σ=Ns = s2N2 = A(N, s)N(N − 1) + N(D7)

A(N, s) = Ns2 − 1
N − 1 (D8)

The same limit A(∞, s) = s2 follows from the classical
trajectory

⟨σnσm⟩∑σ=Ns → α′
cl(ξ)
βN

α′
cl(ξ′)
βN

= s2 (D9)

Let us consider less trivial example5,32

Un,m →
m−1∑
k=n

exp (ıαk,n) ; (D10)

αk,n = β

k∑
l=0
l ̸=n

σl; (D11)

We shall set s = 0, as this is the leading contribution to
the partition function. The expectation value of Un,m in
our continuum limit becomes

⟨Un,m⟩ = N

∫ ξ2

ξ1

dξ ⟨exp (ıα(ξ))⟩ =

N

∫ ξ2

ξ1

dξ exp (−1/2G(ξ, ξ)) (D12)

Here G(ξ1, ξ2) is the Green’s function corresponding
to a 1D particle on a line interval ξ ∈ (0, 1), introduced
in the previous section. It satisfies the equation, which
follows from our Gaussian Action

∂2
ξ G(ξ, ξ′) = −β2Nδ(ξ − ξ′); (D13)

G(0, ξ′) = G(ξ, 0) = 0; (D14)

The solution is

G(ξ, ξ′) = 1/2β2N (ξ + ξ′ − |ξ − ξ′|) (D15)

Thus, we find

⟨Un,m⟩ = N

∫ ξ2

ξ1

dξ exp
(
−1/2β2Nξ

)
=

2
β2 (exp (−y/2) − exp (−x/2)) ; (D16)

x = β2Nξ1; (D17)
y = β2Nξ2; (D18)

in agreement with5,32 in the critical region N →
∞, β2 ∼ 1/N . Finally, the expectation value

〈
Un,mŪn,m

〉
=

m−1∑
l=n

m−1∑
k=n

⟨exp (ıαkn − ıαln)⟩ (D19)

Here, the Gaussian path integration yields

〈
Un,mŪn,m

〉
→ N2

∫ ξ2

ξ1

dξ

∫ ξ2

ξ1

dξ′

exp (−1/2 (G(ξ, ξ) + G(ξ′, ξ′) − 2G(ξ, ξ′))) =

N2
∫ ξ2

ξ1

dξ

∫ ξ2

ξ1

dξ′ exp
(

1/2β2N |ξ − ξ′|
)

=

4
β4 (2 exp ((y − x)/2) + x − y − 2) (D20)

This result also agrees with combinatorial computa-
tions in5,32.

Appendix E: Small Euler ensemble in statistical limit

The remaining problem is averaging over the variables
N, p, q, r of the small Euler ensemble.

The variable s = qr
N is distributed between −1, 1 with

the binomial weight5,32
(

N

N(1 + s)/2

)
peaked at s = 0.

There is a finite term coming from r = 0 plus a continuum
spectrum coming from large r

W (r) =
{

1 if r = 0;
√

2πN
q exp

(
− (qr)2

2N

)
otherwise; (E1)

As it was conjectured in32 and supported by rigorous
estimates in5, the r = 0 term dominates the sums, af-
ter which the variables y, x can be treated as continuous
variables.

The variable p at fixed q has a discrete distribution

fp(p | q) =

q−1∑
p=1
(p,q)

δ(p − n)

φ(q) (E2)

As we shall see, rather than p, we would need an asymp-
totic distribution of a scaling variable

X(p, q) = 1
q2 cot2

(
πp

q

)
(E3)

This distribution for X(p, q) at fixed q → ∞ can be found
analytically, using newly established relations for the
cotangent sums (see Appendix in32, and Mathematica®

notebook35). Asymptotically, at large q, these relations
read

⟨Xn⟩ ≡ lim
q→∞

q−1∑
p=1
(p,q)

X(p, q)n

q
=

δn,0 + 2π−2nζ(2n)
(2n + 1)ζ(2n + 1) (E4)
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This relation can be transformed further as

⟨Xn⟩ =
1 if n = 0

2
∞∑

k=1
φ(k)k−(2n+1)

(2n+1)π2n if n > 0

(E5)

The Mellin transform of these moments leads to the
following singular distribution

⟨Xn⟩ =
∫ ∞

0
fX(X) dX Xn; (E6)

fX(X) = (1 − α)δ(X) + πX
√

XΦ
(⌊

1
π

√
X

⌋)
; (E7)

α = π

∫ ∞

0
X

√
XdXΦ

(⌊
1

π
√

X

⌋)
=

2π

5

∞∑
1

Φ(k)
(

1
(πk)5 − 1

(π(k + 1))5

)
=

2
5π4

∞∑
1

φ(k)
k5 = 1

225ζ(5) (E8)

where Φ(n) is the totient summatory function

Φ(q) =
q∑

n=1
φ(n) (E9)

The distribution can also be rewritten as an infinite
sum

∫
dxfX(x)F (x) = (1 − α)F (0) +

π

∞∑
n=1

φ(n)

1
π2n2∫
0

x
3
2 dxF (x) (E10)

The normalization of this distribution comes out 1 as
it should, with factor 1 − α in front of the delta function.

The upper limit of X

Xmax = X (q − 1, q) → 1
π2 (E11)

Our distribution (E6) is consistent with this upper limit,
as the argument

⌊
1

π
√

X

⌋
becomes zero at Xπ2 > 1. It is

plotted in Fig. 22.
Once we are zooming into the tails of the p, q distribu-

tion, we also must recall that

P(q < yN) = Φ (⌊Ny⌋)
Φ (N) → y2; (E12)

fy(y) =

N∑
q=2

δ
(

y − q

N

)
φ(q)

Φ (N) (E13)
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√
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X → 0.

Appendix F: The velocity correlation in Fourier space

Let us outline an analytical solution. We shift the time
variable by t + t0 ⇒ t to simplify the formulas.

The correlation function reduces to the following aver-
age over the big Euler ensemble E of our random curves
in complex space32

〈
ω⃗(⃗0) · ω⃗(r⃗)

〉
=
∫

O(3)

dΩ
4t2|O(3)|∑

0≤n<m<N

〈
ω⃗m · ω⃗neıρ⃗·Ω̂·(S⃗n,m−S⃗m,n)

〉
E

; (F1)

S⃗n,m =
∑m−1

k=n F⃗k

m − n (mod N) ; (F2)

ω⃗k =
{

0, 0,
ıσk

2 cot
(

β

2

)}
; (F3)

ρ⃗ = r⃗

2
√

νt
; (F4)

⟨X[σ...]⟩p,q,r ≡
∑

E X[σ...]δ[qr −
∑

σ]∑
E δ[qr −

∑
σ] ; (F5)

Integrating the global rotation matrix O(3) is part of the
ensemble averaging.

Let us apply our path integral to the expectation value
over spins σ = ±1 in the big Euler ensemble, with the
distribution of q, X established in the previous section.
In the continuum limit, we replace summation with in-
tegration. We arrive at the following expression for the
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correlation function:〈
ω⃗(⃗0) · ω⃗(r⃗)

〉
∝∑

even q<N

∑
p; (p|q)

cot2(πp/q)
(p/q)2

∫
0<ξ1<ξ2<1

dξ1dξ2

∫
O(3)

dΩ

∫
[Dα]α′(ξ1)α′(ξ2)eı

r⃗·Ω̂·Im V⃗ (ξ1,ξ2)√
νt

t2Φ(N)|O(3)|
∫

[Dα] ; (F6)

V⃗ (ξ1, ξ2) =
q
√

X {ı, 1, 0} (S(ξ1, ξ2) − S(ξ2, 1 + ξ1)) ; (F7)

S(a, b) =
∫ b

a
dξeıα(ξ)

b − a
; (F8)

Here and in the following, we skip all positive constant
factors, including powers of N. Ultimately, we restore the
correct normalization of the vorticity correlation using its
value at r⃗ = 0 computed in previous work32.

The computations significantly simplify in Fourier
space.〈

ω⃗(⃗0) · ω⃗(k⃗)
〉

=
∫

d3r⃗
〈
ω⃗(⃗0) · ω⃗(r⃗)

〉
exp

(
−ı⃗k · r⃗

)
∝∑

even q<N

∑
p; (p|q)

cot2(πp/q)∫
O(3)

dΩ(p/q)2
∫

0<ξ1<ξ2<1

dξ1dξ2

∫
[Dα]α′(ξ1)α′(ξ2)δ

(
r⃗ · Ω̂ · Im V⃗ (ξ1, ξ2)√

νt
− k⃗

)
t2Φ(N)|O(3)|

∫
[Dα] (F9)

The angular integration
∫

dΩ yields

∫
O(3)

dΩδ

(
Ω̂ · Im V⃗ (ξ1, ξ2)√

νt
− k⃗

)

∝
√

νt

k⃗2
δ
(∣∣∣Im V⃗ (ξ1, ξ2)

∣∣∣− |⃗k|
√

νt
)

(F10)

Now, using the Lagrange multiplier λ for this condi-
tion, and shifting integration over λ to the real axis, we
have to minimize effective action

A[α, λ] = πy2X

2

∫ 1+ξ1

ξ1

(α′)2 +

λy
√

X

∣∣∣∣∣∣∣∣∣
∫ ξ2

ξ1

dξ eıα

ξ2 − ξ1
−

∫ 1+ξ1

ξ2

dξ eıα

1 + ξ1 − ξ2

∣∣∣∣∣∣∣∣∣ ; (F11)

∂λA[α, λ] = |⃗k|
√

νt; (F12)

This variational problem reduces to two pendulum

equations

α′′
1 + r

ξ2 − ξ1
sin α1 = 0; ∀ξ1 < ξ < ξ2 (F13)

α′′
2 + r

ξ2 − ξ1 − 1 sin α2 = 0; ∀ξ2 < ξ < 1 + ξ1 (F14)

r = λ

πy
√

XI(r)
; (F15)

I(r) =

∣∣∣∣∣∣∣∣∣
∫ ξ2

ξ1

dξ eıα1

ξ2 − ξ1
−

∫ 1+ξ1

ξ2

dξ eıα2

1 + ξ1 − ξ2

∣∣∣∣∣∣∣∣∣ ; (F16)

The well-known solution is Jacobi amplitude am(x | u),

α1(ξ) =

2am
(

ξ − α2

2 a1 | r

a2
1(ξ2 − ξ1)

)
; (F17a)

α2(ξ) =

2am
(

ξ − α2

2 a2 | − r

a2
2(1 − ξ2 + ξ1)

)
; (F17b)

The free parameters a1, a2, α1, α2 satisfy four equa-
tions

α1(ξ2) = α2(ξ2); (F18a)
α′

1(ξ2) = α′
2(ξ2); (F18b)

α1(ξ1) = α2(1 + ξ1); (F18c)
α′

1(ξ1) = α′
2(1 + ξ1); (F18d)

together with the constraint following from the varia-
tion of the Lagrange multiplier λ:

I(r) = |⃗k|
√

νt

y
√

X
(F19)

Appendix G: Turbulent viscosity and the local limit

These five equations, in general, are quite complex,
but there is one simplifying property. In the local limit
N → ∞, the remaining effective action at the extremum

NA[αc, λc] = πNy2X

2(∫ ξ2

ξ1

dξ(α′
1(ξ))2 +

∫ 1+ξ1

ξ2

dξ(α′
2(ξ))2

)
(G1)

grows as N , unless both α1(ξ) ∼ α2(ξ) ∼ N−1/2 → 0.
In this case, the above constraint can be expanded in
α1, α2. As we show in40, the leading constant and linear
terms both cancel so that the quadratic term remains
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2|⃗k|
√

νt

y
√

X
=∣∣∣∣∣

∫ ξ2

ξ1

dξα2
1(ξ)

ξ2 − ξ1
−
∫ 1+ξ1

ξ2

dξα2
2(ξ)

1 + ξ1 − ξ2

∣∣∣∣∣
∼ 1

N
(G2)

This estimate then requires vanishing viscosity in the
local limit, at fixed turbulent viscosity

ν̃ = νN2 → const . (G3)
This phenomenon of renormalization of viscosity by a

factor of N2 was already observed in our first paper32.
Our Euler ensemble in the local limit N → ∞ can only
solve the inviscid limit of the Navier-Stokes decaying tur-
bulence, with finite ν̃ acting as a turbulent viscosity.

The desired anomalous dissipation phenomenon takes
place in this limit of our theory.

Appendix H: Linearized classical trajectory

Returning to the elliptic function solution, we rewrite
it in the linearized case at a1 ∼ a2 → 0. This lineariza-
tion is equivalent to replacing sin(α) → α in the differen-
tial equation and studying the resulting linear ODE as a
boundary problem. We choose different parametrizations
in this linear case

α1(ξ) =

a

(
cos (K1(ξ − ξ2)) + b

K1
sin (K1(ξ − ξ2))

)
; (H1)

α2(ξ) =

a

(
cos (K2(ξ − ξ2)) + b

K2
sin (K2(ξ − ξ2))

)
; (H2)

K1 =
√

r

∆; (H3)

K2 =
√

r

∆ − 1 ; (H4)

∆ = ξ2 − ξ1; (H5)
In the physical region 0 < ∆ < 1, r < 0, K2 is real, and

K1 imaginary, but the solution stays real. The matching
conditions at α1(ξ2) = α2(ξ2), α′

1(ξ2) = α′
2(ξ2) are iden-

tically satisfied with this Anzatz. The derivative match
α′

1(ξ1) = α′
2(1 + ξ1) can be solved exactly for b

b = P

Q
; (H6)

P =
√

r

∆ − 1 sin
(

(1 − ∆)
√

r

∆ − 1

)
+√

r

∆ sin
(

∆
√

r

∆

)
; (H7)

Q = cos
(

(∆ − 1)
√

r

∆ − 1

)
− cos

(
∆
√

r

∆

)
(H8)

Out [ ] =

0.2 0.4 0.6 0.8 1.0
Δ

-600

-400

-200

r

r0(Δ)

Figure 23. Log plot of r0(∆).

Out [ ] =

0.2 0.4 0.6 0.8 1.0
Δ

-2.0

-1.5

-1.0

-0.5

0.5

S

S(Δ)

Figure 24. Plot of S (∆).

The remaining matching condition α1(ξ1) = α2(1 + ξ1)
reduces to the root of the function

g(r, ∆) =
(2∆ − 1) sin

(√
(∆ − 1)r

)
sin
(√

∆r
)

√
(∆ − 1)∆

+

2 cos
(√

(∆ − 1)r
)

cos
(√

∆r
)

− 2 (H9)

This function has multiple roots, but we are looking
for the real root r0(∆) with minimal value of the action
at given ∆

Ac(r, ∆) =
∫ ξ2

ξ1

dξα′
1(ξ)2 +

∫ 1+ξ1

ξ2

dξα′
2(ξ)2 (H10)

This integral is elementary, but the expression is too long
to be presented here. It can be found in the Mathematica®

notebook40, where it is used to select the roots r0(∆)
of g(r, ∆), minimizing Ac (r0(∆), ∆) for a given value of
∆ ∈ (0, 1). All the solutions for Action for different roots
of r0(∆) are shown in Fig.25.

This lowest action root is plotted in Fig.23. The corre-
sponding value of minimal action L(∆) = Ac (r0(∆), ∆)
is plotted in Fig.27.



35

Out [ ] =

0.2 0.4 0.6 0.8
Δ

50

100

150

200

250

A

Action

r<0, Δ <1/2

r>0, Δ <1/2

r<0, Δ>1/2

Figure 25. Plot of Ac (r0(∆), ∆) for the three real solutions of
the equation g(r, ∆) = 0. At ∆ = ∆1 and ∆ = ∆2, the action
curves intersect; at ∆ = 1/2, there is a gap between the lowest
action (= 0) and the lowest of the other two. So, there are
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There are phase transitions at

∆ = {∆1, ∆2, ∆3} ; (H11)
∆1 = 0.157143; (H12)
∆2 = 0.43015; (H13)
∆3 = 1/2; (H14)

These branch points in ∆ correspond to the switch of
the lowest action solution. At small positive ∆ − 1/2

r0(∆) → −48(∆ − 1/2) − 1536(∆ − 1/2)3

7 + . . . ;(H15)

A0(r0(∆), ∆) → 256(∆ − 1/2)2 + . . . (H16)

At ∆ → 1 all solutions go to −∞ as

rn(∆) → − 6
1 − ∆ + O(1) (H17)

This behavior matches numerical computations in
Mathematica®40.

The constraint (G2) is also reduced to elementary func-
tions, too lengthy to quote here (see40).

This constraint yields the quadratic relation for the
last unknown parameter a in our solution

a2 = |⃗k|
√

νt

S(∆)y
√

X
; (H18)

with universal function S(∆) presented in40 and shown
in Fig. 24).

The resulting integral (up to the pre-exponential factor
Q) is equal to∫

[Dα]α′(ξ1)α′(ξ2)δ
(∣∣∣Im V⃗ (ξ1, ξ2)

∣∣∣− |⃗k|
√

νt
)

∝

Q ⟨α′(ξ1)α′(ξ2)⟩ exp
(

−y
√

X |⃗k|
√

ν̃t
πL(∆)
2|S(∆)|

)
(H19)

The factor ⟨α′(ξ1)α′(ξ2)⟩ contains two terms :

⟨α′(ξ1)α′(ξ2)⟩ = α′
1(ξ1)α′

1(ξ2) + ⟨δα′(ξ1)δα′(ξ2)⟩(H20)
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Figure 26. Plot of universal function J(∆).the four corves
correspond to four phases (solutions for r0(∆) ).

The first term is the contribution of the classical solution
we have just found, and the second term comes from
Gaussian fluctuations δα(ξ) around this solution.

The classical term is calculable (see40)

α′
1(ξ1)α′

1(ξ2) = |⃗k|
√

ν̃t

Ny
√

X

J (∆)
|S(∆)| ; (H21)

J (∆) = rA(r, ∆)B(r, ∆)
∆(∆ − 1)C(r, ∆)2

∣∣∣∣
r=r0(∆)

; (H22)

A(r, ∆) =

∆ sin
(√

(∆ − 1)r
)

−
√

(∆ − 1)∆ sin
(√

∆r
)

;(H23)

B(r, ∆) = ∆ sin
(√

(∆ − 1)r
)

cos
(√

∆r
)

−√
(∆ − 1)∆ sin

(√
∆r
)

cos
(√

(∆ − 1)r
)

; (H24)

C(r, ∆) = cos
(√

(∆ − 1)r
)

− cos
(√

∆r
)

; (H25)

(see Fig. 26).
The fluctuation term ⟨δα′(ξ1)δα′(ξ2)⟩ is also propor-

tional to 1/N , therefore we must keep this term as well.
As for the pre-exponential factor Q in the saddle point

integral, it is given by the functional determinant of the
operator L̂ corresponding to linearized effective action
(H10) in the vicinity of the saddle point λc, αc(ξ).

A[αc + δα, λc + δλ]

→ A[αc, λc] + 1/2tr
(

V † | L̂ | V
)

; (H26)

V = {δλ, δα} ; (H27)

Q(∆, τ) = exp
(

−1/2tr
(

log L̂

L̂α

))
α→0

; (H28)

τ = y
√

X; (H29)

The fluctuation correction reduces to the inverse operator
L̂, which we compute in the next section.

Now, we can reduce multiple sum/integral in (F9) to
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Figure 27. Log plot of L(∆) = Ac (r0(∆), ∆).

the following〈
ω⃗(⃗0) · ω⃗(k⃗)

〉
=

ν̃
3/2H

(
k
√

ν̃t
)

√
t

; (H30)

H(κ) = 1
Z

∞∑
n=1

φ(n)
∫ 1/n

0
dτ
(
τ5/n5 − τ10)

∫ 1

0
d∆(1 − ∆)G (∆, τ, κ) ; (H31)

G (∆, τ, κ) = exp
(

− τκL(∆)
2π|S(∆)|

)
Q (∆, τ)

(
κ

Nτ

J (∆)
|S(∆)| + ⟨δα′(ξ1)δα′(ξ2)⟩

)
(H32)

where Z is the normalization constant to be determined
later.

Appendix I: Functional determinant in the path integral

As we have discussed in the previous section, in the
limit a → 0 the classical solution α1,2(ξ) ∝ a → 0.

This observation simplifies the linearized theory corre-
sponding to this quadratic form

〈
V | L̂ | V

〉
. First, in-

tegrate the fluctuations δλ of λ around the saddle point
solution.

The Lagrange multiplier at the saddle point vanishes,
as we show in40

λ0 = τr0(∆)I(r0(∆)) = 0 (I1)

The quadratic term comes from the first derivatives Iλ =
∂λI, Ir = ∂rI, λr = ∂rλ , which can be simplified by
switching to λ(r) = τtI(r)

Aλλ = τIλ = τIr

λr
= τIr

τrIr
= 1

r
(I2)

The bilinear term λδα also simplifies

Aαλ(δα) = ıτδλF [δα]; (I3)

F [δα] =
∫ ξ2

ξ1

dξδα(ξ)
ξ2 − ξ1

−
∫ 1+ξ1

ξ2

dξδα(ξ)
1 + ξ1 − ξ2

(I4)

We can integrate out λ, producing the extra pre-
exponential factor Qλ =

√
|r0(∆)|/

√
N .

The bilinear term in the exponential after λ integration
leads to the following effective quadratic Action for δα

Aeff [δα] = τ2

2

∫ 1+ξ1

ξ1

δα′2 + r0(∆)τ2

2 F [δα]2; (I5)

There is a zero-mode δα(ξ) = const , related to transla-
tional invariance of Aeff [δα]. Naturally, this zero-mode
must be eliminated from the spectrum when we compute
the functional determinant and the resolvent below.

After discarding the zero-mode, this effective action
becomes a positive definite functional of δα only in the
region of ∆ where r0(∆) > 0, i.e., for ∆1 < ∆ < ∆2.

As we shall see below, the spectrum of fluctuations is
positive only in this region. Therefore, we restrict our
integration to this region.

The (δα)2 term corresponds to the linear eigenvalue
equation with f1,2 = δα1,2

f ′′
1,2(ξ) − µ1,2F [f ] = −ωf1,2(ξ); (I6)

µ1,2 =
{

r

∆ ,
r

∆ − 1

}
; (I7)

ϵ = ωτ2; (I8)
r = r0(∆); (I9)

The solution matching with first derivative at ξ = ξ2, ξ =
(ξ1, 1 + ξ1) is built the same way as in (H6). Equations
for f1,2 being linear homogeneous, we can fix the normal-
ization as F [f ] = 1,

f1(x) = a sin(
√

ω(ξ−ξ2)) +
B1 cos(

√
ω(ξ−ξ2)) + r

ω∆; (I10)

f2(ξ) = a sin(
√

ω(ξ−ξ2)) +
B2 cos(

√
ω(ξ−ξ2)) + r

ω(∆ − 1) ; (I11)

The spectrum ω = ωn is defined by the transcendental
equation (the discriminant of this linear system of equa-
tions), which we found in40

f(ωn, ∆) = 0; (I12)
f(ω, ∆) =

(∆ − 1)∆
√

ω sin
(√

ω

2

)
((∆ − 1)∆ω + r) +

r cos
(

1
2(1 − 2∆)

√
ω

)
− r cos

(√
ω

2

)
; (I13)

r = r0(∆); (I14)

The spectrum is positive in the interval ∆1 < ∆ < ∆2
where r0(∆) > 0 so that the solution for ωn(∆) is stable.
In the following, we only select the stable region with
positive r0(∆)

The first levels of the spectrum satisfying equation
f(ω, ∆) = 0 are shown in Fig.28.
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Figure 28. The first levels of the spectrum satisfying equation
f(ω, ∆) = 0. The colored lines correspond to four phases.
Red: 0 < ∆ < ∆1, Green: ∆1 < ∆ < ∆2, Blue: ∆2 < ∆ <
1/2, Brown: 1/2 < ∆ < 1. The green zone is left as stable,
and others are eliminated because r0(∆) < 0 in these zones.
Naturally, we eliminate the zero-mode ϵ0 = 0 corresponding
to translational invariance of the effective Action.

The functional determinant, resulting from the WKB
approximation to the α path integral, would be related
to the infinite product of positive eigenvalues ϵn = τ2ωn,
which can be written using a contour integral

Qα (∆, τ) =
∏

ωn>0
(τ2ωn)−1/2 =

exp
(

1/2∂xIm
∮

Γ

f ′(ω)
f(ω)

dω

2π(ωτ2)x

)∣∣∣∣
x→0

; (I15)

and the integration contour Γ encircles anticlockwise
the positive real poles of the meromorphic function
f ′(ω)/f(ω). The integral converges at x > 1/2 and should
be analytically continued to x = 0.

For this purpose, let us introduce another function

Φ(ω) = f(ω)
cos(

√
ω/2)ω−3/2 (I16)

We show in40 that at large ω = ıy this function reaches
finite limits

Φ(ıy) → ı sign y(∆ − 1)2∆2 + (∆ − 1)∆r

|y|
(I17)

The logarithmic derivative of the original function dif-
fers from Φ′(ω)

Φ(ω) by the following meromorphic function

f ′(ω)
f(ω) − Φ′(ω)

Φ(ω) = −
tan

(√
ω

2

)
4
√

ω
+ 3

2ω
(I18)

This difference produces a calculable contribution to our
integral. By summing residues of the poles of the tangent,

we get

∮
Γ

−
tan

(√
ω

2

)
4
√

ω
+ 3

2ω

 dω

2π(ωτ2)x
=

ı
(
1 − 22x

)
(2πτ)−2xζ(2x) (I19)

The derivative at x = 0 yields a constant

1/2∂xIm ı
(
1 − 22x

)
(2πτ)−2xζ(2x) → log(2)

2 (I20)

leading to an irrelevant renormalization of Qα(∆, τ) by
a factor

√
2.

The remaining integral with f(ω) ⇒ Φ(ω) already con-
verges at Re x > −1, so that we can set x = 0 and rotate
the integration contour Γ parallel to the imaginary axis
at Re Γ = ϵ > 0:

Qα (∆, τ) =

exp
(

1/2Im
∫ ϵ+ı∞

ϵ−ı∞

Φ′(ω)
Φ(ω)

log(ωτ2) dω

2π

)
(I21)

The remarkable property of this functional determinant
is the factorization of the τ dependence

Qα(∆, τ) = τµ(∆)Qα(∆, 1); (I22)

µ(∆) = Im
∫ ϵ+ı∞

ϵ−ı∞

Φ′(ω)
Φ(ω)

dω

2π
(I23)

The index µ(∆) has a topological origin and can be
computed analytically.

µ(∆) = arg Φ(ı∞) − arg Φ(−ı∞)
2π

= 1/2 (I24)

Our result for the correlation function is given by (H30)
with

Q (∆, τ) = Qα (∆, 1) τ
1/2
√

r0(∆) (I25)

and Qα(∆, 1) given by (I21). All the constant factors
we have omitted here are absorbed by the normalization
factor Z, which we determine at the end of the next
section.

Appendix J: The fluctuation term in α′(ξ1)α′(ξ2)

The last missing term is the fluctuation contribution
to α′(ξ1)α′(ξ2). In the Gaussian approximation, valid at
N → ∞, this term equals

⟨δα′(ξ1)δα′(ξ2)⟩ = −1
Nτ2 [∂ξ∂ξ′G(ξ, ξ′)]ξ=ξ1,ξ′=ξ2

(J1)
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where G(ξ, ξ′) is a resolvent for the effective quadratic
Action (I5). This resolvent satisfies the equation

∂2
ξ G(ξ, ξ′) − µ(ξ)F [G] = δ(ξ − ξ′); (J2)

G(ξ1, ξ′) = G(ξ1 + 1, ξ′) = 0; (J3)

F [G] =
∫ ξ2

ξ1

dξG(ξ, ξ′)
ξ2 − ξ1

−∫ 1+ξ1

ξ2

dξG(ξ, ξ′)
1 + ξ1 − ξ2

; (J4)

µ(ξ) =
{

r
∆ if ξ1 ≤ ξ < ξ2

r
∆−1 if ξ2 ≤ ξ < 1 + ξ1

(J5)

The solution of this equation, matching with the first
derivative at ξ = ξ2 is

G(ξ, ξ′)ξ1≤ξ<ξ2 = A + |ξ − ξ′|
2 + B(ξ − ξ2) +

F [G]r(ξ − ξ2)2

2∆ (J6)

G(ξ, ξ′)ξ2≤ξ<1+ξ1 = A + |ξ − ξ′|
2 + B(ξ − ξ2) +

F [G]r(ξ − ξ2)2

2(∆ − 1) ; (J7)

The linear functional F [G] on this solution becomes a
linear function of these unknown parameters A, B. Two
boundary conditions G(ξ1, ξ′) = G(ξ1 + 1, ξ′) = 0 fix
these parameters as functions of ξ1, ξ2, ξ′.

The result derived in40 is too lengthy to present here.
The desired quantity (J1) is quite simple

1
Nτ2 [∂ξ∂ξ′G(ξ, ξ′)]ξ=ξ1,ξ′=ξ2

= 2(r − 6)
(r + 12)Nτ2 (J8)

Finally, we get the following correlation (H30) (absorb-
ing the constant factors in Z)

ν
〈

ω⃗(⃗0) · ω⃗(k⃗)
〉

=
ν̃

3/2H
(
k
√

ν̃t
)

√
t

; (J9a)

H(κ) =
∫ ∆2

∆1

d∆(1 − ∆)
∞∑

n=1
φ(n)

∫ 1/n

0

dτ

τ
5
2

(
τ5/n5 − τ10)G (∆, τκ) ; (J9b)

G (∆, x) = Qα (∆, 1)
√

r0(∆)
Z(

x
J (∆)
S(∆) + 2(r0(∆) − 6)

(12 + r0(∆))

)
exp

(
− xL(∆)

2πS(∆)

)
(J9c)

Appendix K: Mellin integral for the energy spectrum and
energy decay

The spectral function H(κ) can be computed as fol-
lows. Let us represent the theta function as inverse Mellin

transform (at n > 0, τ > 0)

θ(1 − nτ) =
+0+ı∞∫

+0−ı∞

dp

2πıp
n−pτ−p (K1)

Substituting this representation into our integral in (J9),
and interchanging summations/integrations, we find

H(κ) =
∫ ∆2

∆1

d∆(1 − ∆)
+0+ı∞∫

+0−ı∞

dp

2πıp

∞∑
n=1

φ(n)
np

∫ ∞

0
dt

(
t5/2

n5 − t15/2
)

t−p(A + Btκ)e−Ctκ; (K2)

A = Qα (∆, 1)
√

r0(∆)
Z

2(r0(∆) − 6)
(12 + r0(∆)) ; (K3)

B = Qα (∆, 1)
√

r0(∆)
Z

J (∆)
S(∆) ; (K4)

C = L(∆)
2πS(∆) ; (K5)

The last integral reduces to Gamma functions and
powers of n, after which the sum over n reduces to the
ratio of two zeta functions

H(κ) =
∫ ∆2

∆1

d∆(1 − ∆)
∫ −2+ı∞

−2−ı∞

dz κz

2πı

20Cz−1(AC − Bz)ζ
(
z + 15

2
)

Γ(−z)
(2z + 7)(2z + 17)ζ

(
z + 17

2
) (K6)

According to the Riemann hypothesis, the function
ζ(w), w = z + 17

2 in the denominator has trivial zeros
at negative even points z = −2, −4, . . . and nontrivial
zeros at the critical line Re w = 1/2.

There is also a contribution from the poles at z + 15
2 =

1, (2z + 7) = 0, (2z + 17) = 0.
We are not going to sum the residues in these poles,

but rather integrate along the line z = −2 + ıy, where
the integrand exponentially decreases as exp

(
− π|y|

2

)
in

both directions.
There are oscillations on top of this exponential de-

crease. The integrals can be computed with arbitrary
accuracy in Mathematica® using the ”DoubleExponen-
tialOscillatory” integration method. Each integration
takes a fraction of a second. The remaining integral
over ∆ was performed by computing the table of (posi-
tive) values of integrand I(∆) on a grid with step δ∆ =
∆2−∆1

100 , and interpolating log(I(∆)) between these values
by fifth order polynomial P5(∆). Integral of the exponen-
tial of this polynomial

∫
d∆(1 − ∆) exp (P5(∆)) yields

good enough accuracy ( floating precision 10−8).
This process was repeated for all M =1000 values of

κ = 0.1(1000/0.1)n/M , n = 0, . . . , M , corresponding to
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Figure 29. The log-log plot energy dissipation t2E(t) as a
function of t has a regime change due to quantum effects. It
starts as constant at small t and asymptotically decays as
t2E ∝ t−1/4.

equidistant log grid. This table was computed in paral-
lel in Mathematica® in34, which took just a few minutes.
Here is the resulting function H(κ)κ5/3 (see Fig.6). It
shows strong deviations from K41 spectrum, in agree-
ment with the DNS at Fig.5.

The asymptotic behavior of this function is

H(κ) ∝ κ−7/2 (K7)

The effective index µ(κ) = d log H(κ)
d log κ slowly decreases

reaching µ(∞) = −7/2, as shown on Fig.7.
The function F (κ) =

∫∞
κ

x2H(x) dx was obtained by
numerical integration of exponential of interpolated func-
tion as before, with asymptotic tail H(κ) → const κ−7/2

integrated analytically.
The log-log plot of the energy dissipation as a function

of time is shown in Fig. 29, and it is curved in the log-log
scale due to the quantum effects (complex poles of Mellin
transform at Riemann ζ function zeros).
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